The Zyxel LTE7490-M904 is an 802.3at PoE powered LTE outdoor (IP68) CPE
with integrated directional antennas.
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 256 MB
- Flash: 128 MB MB NAND (MX30LF1G18AC)
- WiFi: MediaTek MT7603E 802.11b/g/n
- Switch: 1 LAN port (1 Gbps)
- LTE/3G/2G: Quectel EG18-EA LTE-A Cat. 18 connected by USB3 to SoC
- SIM: 1 micro-SIM slots under transparent cover
- Buttons: Reset, WLAN under same cover
- LEDs: Multicolour green/red/amber under same cover (visible)
- Power: 802.3at PoE via LAN port
The device is built as an outdoor ethernet to LTE bridge or router.
The wifi interface is intended for installation and/or temporary
management purposes only.
UART Serial:
57600N1, located on populated 5 pin header J5:
[o] GND
[ ] key - no pin
[o] RX
[o] TX
[o] 3.3V Vcc
Remove the SIM/button/LED cover and 12 screws holding the back plate
and antenna cover together. Be careful with the cables.
Installation from OEM web GUI:
- Log in as "admin" on OEM web GUI
- Upload OpenWrt initramfs-recovery.bin image on the
Maintenance -> Firmware page
- Wait for OpenWrt to boot and ssh to root@192.168.1.1
- Sysupgrade to the OpenWrt sysupgrade image and reboot
For more details about flashing see:
2449a63208 (ramips: mt7621: Add support for ZyXEL NR7101, 2021-04-19)
Main porting work done by Ernesto Castellotti <ernesto@castellotti.net>:
bf1c12f68b (ramips: add support for ZyXEL LTE7490-M904, 2023-12-20)
Signed-off-by: Eric Schäfer <eric@es86.de>
Link: https://github.com/openwrt/openwrt/pull/17485
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add support for Genexis Pulse EX400 / Inteno Pulse EX400. A branded
variant for the Finnish ISP DNA has already been added in fea2264d9f
(ramips: mt7621: Add DNA Valokuitu Plus EX400, 2023-07-31). This commit
adds support for the generic variants with Inteno and Genexis branding.
Inteno changed its name to Genexis and both brandings exist.
In terms of electronics, there is no difference between the DNA-branded
version and other brandings. LED markings on the case are different,
though. While the DNA-version has a "software-update" LED, the other
versions have a WPS LED. To reduce user confusion, create a separate
image.
Add the different device-tree with the different LED and rename things
to work the same way for both variants.
Specifications:
- Device: Genexis Pulse EX400 / Inteno Pulse EX400
- SoC: MT7621A
- Flash: 256 MB NAND
- RAM: 256 MB
- Ethernet: Built-in, 2 x 1 GbE
- Wifi: MT7603 2.4 GHz 2x2 MIMO, MT7615 5 GHz 4x4 MU-MIMO
- USB: 1x 2.0
- LEDs (GPIO): green/red status, green WPS
- LEDs (SX9512, unsupported): Broadband, Wi-Fi 2.4G, Wi-Fi 5G
- Buttons (GPIO): Reset
- Buttons (SX9512, unsupported): Wi-Fi 2.4G, Wi-Fi 5G, WPS
MAC addresses:
- LAN: U-Boot 'ethaddr' (label)
- WAN: label + 1
- 2.4 GHz: label + 6
- 5 GHz: label + 7
Serial:
There is a black block connector next to the red ethernet connector. It
is accessible also through holes in the casing.
Pinout (TTL 3.3V)
+---+---+
|Tx |Rx |
+---+---+
|Vcc|Gnd|
+---+---+
Firmware:
The vendor firmware is a fork of OpenWrt (Reboot) with a kernel version
4.4.93. The flash is arranged as below and there is a dual boot
mechanism alternating between rootfs_0 and rootfs_1.
+-------+------+------+-----------+-----------+
| | env1 | env2 | rootfs_0 | rootfs_1 |
| +------+------+-----------+-----------+
| | UBI volumes |
+-------+-------------------------------------+
|U-Boot | UBI |
+-------+-------------------------------------+
|mtd0 | mtd1 |
+-------+-------------------------------------+
| NAND |
+---------------------------------------------+
In OpenWrt rootfs_0 will be used as a boot partition that will contain the
kernel and the dtb. The squashfs rootfs and overlay are standard OpenWrt
behaviour.
+-------+------+------+-----------+--------+------------+
| | env1 | env2 | rootfs_0 | rootfs | rootfs_data|
| +------+------+-----------+--------+------------+
| | UBI volumes |
+-------+-----------------------------------------------+
|U-Boot | UBI |
+-------+-----------------------------------------------+
|mtd0 | mtd1 |
+-------+-----------------------------------------------+
| NAND |
+-------------------------------------------------------+
U-boot:
With proper serial access, booting can be halted to U-boot by pressing
any key. TFTP and flash writes are available, but only the first one has
been tested.
NOTE: Recovery mode can be accessed by holding down the reset button while
powering on the device. The led 'Update' will show a solid green light
once ready. A web server will be running at 192.168.1.1:80 and it will
allow flashing a firmware package. You can cycle between rootfs_0 and
rootfs_1 by pressing the reset button once.
Root password:
With the vendor web UI create a backup of your settings and download the
archive to your computer. Within the archive in the file
/etc/shadow replace the password hash for root with that of a password you
know. Restore the configuration with the vendor web UI and you will have
changed the root password.
SSH access:
You might need to enable the SSH service for LAN interface as by default
it's enabled for WAN only.
Installing OpenWrt:
With the vendor web UI, or from the U-Boot recovery UI, install the
OpenWrt factory image. Alternatively, ssh to the device and use
sysupgrade -n from cli.
Finalize by installing the OpenWrt sysupgrade image to get a fully
functioning system.
Reverting to the vendor firmware:
Boot with OpenWrt initramfs image
- Remove volumes rootfs_0, rootfs and rootfs_data and create vendor
volumes.
ubirmvol /dev/ubi0 -n 2
ubirmvol /dev/ubi0 -n 3
ubirmvol /dev/ubi0 -n 4
ubimkvol /dev/ubi0 -N rootfs_0 -S 990
ubimkvol /dev/ubi0 -N rootfs_1 -S 990
Power off and enter to the U-boot recovery to install the vendor
firmware.
Signed-off-by: Andreas Gnau <andreas.gnau@iopsys.eu>
Link: https://github.com/openwrt/openwrt/pull/17551
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This is an industrial 4G router equipped with OpenWrt 14.07 OEM
customized version
WARNING: The original firmware device tree is common to multiple
boards, and the device tree name is H9350. This submitted device
tree is a modified version, which deletes the non-this-device parts
and adds GPIO watchdog.
Specification:
- SoC: MediaTek MT7620A
- Flash: 16 MB
- RAM: 128 MB
- Power: DC 5V-36V 1.5A
- Ethernet: 1x WAN, 4x LAN (10/100 Mbps)
- Wireless radio: 802.11n 2.4g-only
- LED:
System/Power (RUN): GPIO/26 active-low
Ethernet: 1x WAN, 4x LAN
Modem 1: GPIO/66 active-low
RF 1 (Modem 1 Signal): GPIO/67 active-low
Modem 2: GPIO 71 active-low
RF 2 (Modem 2 Signal): GPIO/24 active-low
WLAN: GPIO/72 active-low
WPS: GPIO/12 active-low
- Button:
WPS / RESET: GPIO/34 active-low
- UART: 1x UART on PCB - 115200 8N1
- GPIO Watchdog: GPIO/62 mode=toggle timeout=1s
- PCIe: 2x miniPCIe for modem
- SIM Slots: 2x SIM Slots
Issue:
- No factory partition, eeprom is located
at /lib/firmware/mt7620a.eeprom
Flash instruction:
Using UART:
1. Configure PC with a static IP address and setup an TFTP server.
2. Put rootfs into the tftp directory.
3. Connect the UART line as described on the PCB.
4. Power up the device and press Ctrl+C to break auto boot.
5. Use `system 6` command and follow the instruction to set device
and tftp server IP address and input the rootfs file name.
U-boot will then load the rootfs and write it into
the flash.
6. Use `system 1` command and follow the instruction to set device
and tftp server IP address and input the firmware file name.
U-boot will then load the firmware once.
7. Login to LuCI and use LuCI upgrade firmware.
Original Firmware Dump / More details:
https://blog.gov.cooking/archives/research-hongdian-h8922-and-flash.html
Signed-off-by: Coia Prant <coiaprant@gmail.com>
Tested-by: Coia Prant <coiaprant@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17472
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This board is also as known as SuperElectron ZN-M5 and ZN-M8. However,
for ZN-M5 and ZN-M8, there's another version uses ZX279128 as CPU
chip, which is unsupported.
You can check it in "高级设置" > "系统日志" > "内核日志" page from webUI.
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: 128 MB SPI-NAND
RAM: 256MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset, WPS
Power: DC 12V 1A
Stock layout flash instructions:
Login into webUI and upload sysupgrade firmware in "系统管理" > "升级固件" page.
Remember to unselect "保留配置" ("Keep configurations") first before doing that.
OpenWrt U-Boot layout flash instructions:
1. Flash stock layout firmware first.
2. Connect to the device via SSH, and backup everything,
especially 'Factory' partition.
3. Unlock MTD partitions:
apk update && apk add kmod-mtd-rw
insmod mtd-rw i_want_a_brick=1
4. Write new BL2 and FIP:
mtd write openwrt-mediatek-filogic-cmcc_a10-ubootmod-preloader.bin BL2
mtd write openwrt-mediatek-filogic-cmcc_a10-ubootmod-bl31-uboot.fip FIP
5. Set static IP on your PC:
IP 192.168.1.254/24, GW 192.168.1.1
6. Serve OpenWrt initramfs image using TFTP server.
7. Cut off the power and re-engage, wait for TFTP recovery to complete.
8. After OpenWrt has booted, perform sysupgrade.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Link: https://github.com/openwrt/openwrt/pull/18121
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add support for Linksys MR5500 (Hydra 6 Pro).
Speficiations:
* SoC: Qualcomm IPQ5018 (64-bit dual-core ARM Cortex-A53 @ 1.0Ghz)
* Memory: Kingston D2516ECMDXGJD (512 MiB)
* Serial Port: 3v3 TTL 115200n8
* Wi-Fi: IPQ5018 (2x2 2.4 Ghz 802.11b/g/n/ax)
QCN9024 (4x4:4 5 Ghz 802.11an/ac/ax)
* Ethernet: IPQ5018 integrated virtual switch connected to an external
QCA8337 switch (4 Ports 10/100/1000 GBASE-T)
* Flash: Gigadevice GD5F2GQ5REYIH (256 MiB)
* LEDs: 1x multi-color PWM LED
1x blue led for USB (GPIO 19 Active High)
* Buttons: 1x WPS (GPIO 27 Active Low)
1x Reset (GPIO 28 Acive Low)
5x ethernet port LEDs (amber for activity & green for link up)
* Peripherals: 1x USB2 (powered by GPIO 17 Active Low)
support for USB3 will be added in a separate PR
* FCC ID: 2AYRA-03734
Flash instructions:
1. On OEM firmware, login to the device (typically at http://192.168.1.1) and click 'CA'
in the bottom right corner -> Connectivity -> Manual Upgrade. Alternatively, browse to
http://<router IP>/fwupdate.html.
Upgrade firmware using openwrt-qualcommax-ipq50xx-linksys_mr5500-squashfs-factory.bin image.
Optionally install on second partition, after first boot check actual partition:
fw_printenv -n boot_part
and install firmware on second partition using command in case of 2:
mtd -r -e kernel -n write openwrt-qualcommax-ipq50xx-linksys_mr5500-squashfs-factory.bin kernel
and in case of 1:
mtd -r -e alt_kernel -n write openwrt-qualcommax-ipq50xx-linksys_mr5500-squashfs-factory.bin alt_kernel
2. Installation using serial connection from OEM firmware (default login: root, password: admin):
fw_printenv -n boot_part
In case of 2:
flash_erase /dev/mtd12 0 0
nandwrite -p /dev/mtd12 openwrt-qualcommax-ipq50xx-linksys_mr5500-squashfs-factory.bin
or in case of 1:
flash_erase /dev/mtd14 0 0
nandwrite -p /dev/mtd14 openwrt-qualcommax-ipq50xx-linksys_mr5500-squashfs-factory.bin
After first boot install firmware on second partition:
mtd -r -e kernel -n write openwrt-qualcommax-ipq50xx-linksys_mr5500-squashfs-factory.bin kernel
or:
mtd -r -e alt_kernel -n write openwrt-qualcommax-ipq50xx-linksys_mr5500-squashfs-factory.bin alt_kernel
3. Back to the OEM firmware.
Download firmware from OEM website:
MR5500: https://support.linksys.com/kb/article/207-en/
From serial or SSH:
fw_printenv boot_part
in case of 1:
mtd -r -e alt_kernel -n write FW_MR5500_1.1.2.209598_prod.img alt_kernel
else in case of 2:
mtd -r -e kernel -n write FW_MR5500_1.1.2.209598_prod.img kernel
4. Boot from USB
This allows you loading an OpenWrt image into RAM and is meant for recovery scenarios only.
Enable loading image from USB in u-boot. From serial or SSH:
fw_setenv bootusb 'usb start && usbboot &loadaddr && bootm $loadaddr'
fw_setenv bootcmd 'run bootusb; if test $auto_recovery = no; then bootipq; elif test $boot_part = 1; then run bootpart1; else run bootpart2; fi'
Copy OpenWrt initramfs image to USB:
dd bs=1M if=openwrt-qualcommax-ipq50xx-linksys_mr5500-initramfs-uImage.itb of=/dev/sda
Signed-off-by: George Moussalem <george.moussalem@outlook.com>
Link: https://github.com/openwrt/openwrt/pull/17958
Signed-off-by: Robert Marko <robimarko@gmail.com>
Specifications:
- SoC: Allwinner A31 @ 1GHz
- DRAM: 1/2Gb DDR3
- SD-card slot
- NAND: 8/16Gb MLC
- Ethernet: 1x 10/100/1000Mbps (RTL8211E)
- Wireless: Ampak AP6210 (BCM43362)
- 2x USB2.0
- 1x mPCIe slot for 4G cards
- 1x SIM slot
- HDMI/VGA via simplefb
- RTC with battery
- Power via DC12V / 3A
Installation:
Use the standard sunxi installation to an SD-card. NAND is
not supported.
This is to re-add proper support for an older device.
Link: https://openwrt.org/toh/merrii/hummingbird
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
Upgrade the u-boot to a more recent version, and drop and refresh
patches while at it. Additionally, use the correct architecture
when running mkimage.
Runtime-tested:
- SiFive Unleashed
- SiFive Unmatched
Dropped:
0009-riscv-Fix-build-against-binutils.patch
Added:
0006-riscv-sifive-fu740-reduce-DDR-speed-from-1866MT-s-to.patch
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
The SPNMX56 is an ISP-branded and distributed device similar to the MX5500
with the same Wifi chips (IPQ5018 for 2.4G and QCN9074 for 5G) but has an
additional QCA8081 PHY providing a 2.5gbps ethernet WAN port.
Speficiations:
* SoC: Qualcomm IPQ5018 (64-bit dual-core ARM Cortex-A53 @ 1.0Ghz)
* Memory: Winbond W634GU6NB-11 (512 MiB DDR3-933)
* Serial Port: 3v3 TTL 115200n8
* Wi-Fi: IPQ5018 (2x2 2.4 Ghz 802.11b/g/n/ax)
QCN9024 (4x4:4 5 Ghz 802.11an/ac/ax)
* Ethernet: IPQ5018 integrated virtual switch connected to an external
QCA8337 switch (3 Ports 10/100/1000 GBASE-T) and a
QCA8081 phy (up to 2.5 Gbps)
* Flash: Gigadevice GD5F2GM7RExxG (256 MiB)
* LEDs: 1x multi-color PWM LED
* Buttons: 1x WPS (GPIO 27 Active Low)
1x Reset (GPIO 28 Acive Low)
Flash instructions:
1. On OEM firmware, login to the device (typically at http://192.168.1.1)
and click 'CA' in the bottom right corner -> Connectivity ->
Manual Upgrade. Alternatively, browse to http://<router IP>/fwupdate.html
Upload openwrt-qualcommax-ipq50xx-linksys_spnmx56-squashfs-factory.bin
Optionally flash 2nd partition, after first boot check actual partition:
fw_printenv -n boot_part
and install firmware on second partition using command in case of 2:
mtd -r -e kernel -n write openwrt-qualcommax-ipq50xx-linksys_spnmx56-squashfs-factory.bin kernel
and in case of 1:
mtd -r -e alt_kernel -n write openwrt-qualcommax-ipq50xx-linksys_spnmx56-squashfs-factory.bin alt_kernel
2. Installation using serial connection from OEM firmware
hit Enter once booted and enter credentials (login: root, password: admin)
fw_printenv -n boot_part
In case of 2:
flash_erase /dev/mtd12 0 0
nandwrite -p /dev/mtd12 openwrt-qualcommax-ipq50xx-linksys_spnmx56-squashfs-factory.bin
or in case of 1:
flash_erase /dev/mtd14 0 0
nandwrite -p /dev/mtd14 openwrt-qualcommax-ipq50xx-linksys_spnmx56-squashfs-factory.bin
After first boot install firmware on second partition:
mtd -r -e kernel -n write openwrt-qualcommax-ipq50xx-linksys_spnmx56-squashfs-factory.bin kernel
or:
mtd -r -e alt_kernel -n write openwrt-qualcommax-ipq50xx-linksys_spnmx56-squashfs-factory.bin alt_kernel
3. Back to the OEM firmware.
Download firmware from OEM website:
Firmware for this device cannot be searched for on the Linksys website.
Instead, we'd have to use serial to intercept the URL of the firmware
while it's trying to update. Firmware is ISP specific:
Toob (UK): http://download.linksys.com/updates/20241125t080737/FW_MX56TB_1.0.1.216218_prod.img
The intention is to collect URLs for different ISPs on a wiki page.
From serial or SSH:
fw_printenv boot_part
in case of 1:
mtd -r -e alt_kernel -n write FW_MX56TB_1.0.1.216218_prod.img alt_kernel
else in case of 2:
mtd -r -e kernel -n write FW_MX56TB_1.0.1.216218_prod.img kernel
Signed-off-by: George Moussalem <george.moussalem@outlook.com>
Link: https://github.com/openwrt/openwrt/pull/17968
Signed-off-by: Robert Marko <robimarko@gmail.com>
Aliyun AP8220 is an AP manufactured by Edgecore.
(Very similar to Edgecore EAP102)
Hardware specifications:
SoC: Qualcomm IPQ8071A
RAM: 1GB of DDR4 600MHz
Flash1: MX25U3235F 4MB
Flash2: MX30UF1G18AC 128MB
Ethernet: 2x 2.5G RJ45 port
USB: 2x USB-A 2.0 port
WiFi1: QCN5024 2.4GHz
WiFi2: QCN5054 5GHz
Power: DC 12V / PoE
Flash instructions:
1. Connect the router via serial port
2. Keep pressing @ until uboot is interrupted
3. Download the initramfs image, rename it to
initramfs.bin, host it with tftp server
4. Run these commands:
tftpboot initramfs.bin
bootm
5. After openwrt boots up, use scp or luci
to upload sysupgrade.bin to upgrade.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
Link: https://github.com/openwrt/openwrt/pull/17970
Signed-off-by: Robert Marko <robimarko@gmail.com>
Upgrade the OpenSBI firmware used by RISC-V CPUs to 1.6.
Runtime-tested:
- d1 (LicheeRV Dock)
- sifiveu (SiFive Unleashed)
Updates since last release:
1.6:
Support for parsing riscv,isa-extensions DT property
Setup serial console very early in cold boot path
Support for multiple heaps and aligned memory allocation
Support for shadow stacks (Zicfiss) ISA extension
Support for landing pads (Zicfilp) ISA extension
Support for per-domain data
Support for double-trap (Smdbltrp/Ssdbltrp) ISA extensions
DT-based configurable heap size
Common fdt_driver and helpers for driver initialization
Support for SBI PMU raw event v2 (Experimental)
Simple FDT based mailbox driver framework
RPMI shared memory transport driver (Experimental)
RPMI system reset driver (Experimental)
Simple FDT based system suspend driver framework
RPMI system suspend driver (Experimental)
Simple FDT based HSM driver framework
RPMI HSM driver (Experimental)
Simple FDT based CPPC driver framework
RPMI CPPC driver (Experimental)
SBI Message Proxy (MPXY) extension (Experimental)
Simple FDT based MPXY driver framework
Common RPMI client driver for MPXY (Experimental)
Support for vector misaligned load/store
1.5.1:
Save/restore menvcfg only when it exists
Adjust Sscofpmf mhpmevent mask for upper 8 bits
Fix potential NULL pointer dereferences in SBI DBTR
Fix incorrect size passed to sbi_zalloc() in SBI FWFT
Check result of pmp_get() in is_pmp_entry_mapped()
1.5:
SBI debug triggers (DBTR) extension (Experimental)
Support to specify coldboot harts in DT
Relocatable FW_JUMP_ADDR and FW_JUMP_FDT_ADDR
Smcsrind and Smcdeleg extensions support
SBIUnit testing framework
Initial domain context management support
Platform specific load/store emulation callbacks
New trap context
Improved sbi_trap_error() to dump state in a nested trap
SBI supervisor software events (SSE) extension (Experimental)
Simplified wait_for_coldboot() implementation
Early wakeup of non-coldboot HART in the coldboot path
Sophgo CV18XX/SG200X series support
APLIC delegation DT property fix
Svade and Svadu extensions support
SBI firmware features (FWFT) extension (Experimental)
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
It seems the that this was forgotten during initial adding of the
device in 0688cf5aeb
Thanks to
https://forum.openwrt.org/t/zyxel-gs1900-10hp-revision-b1-support-openwrt-firmware/131841/32
for putting me on the right track for this problem
Error that is being fixed - running fw_printenv results in:
"Warning: Bad CRC, using default environment"
and not showing boardmodel
Workaround, manually changing /etc/fw_env.config to
"/dev/mtd1 0x0 0x400 0x10000"
Signed-off-by: Klaas Demter <psychic-stool-cozy@duck.com>
Link: https://github.com/openwrt/openwrt/pull/17920
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Backport FORESEE NAND chip support from upstream Linux. The newly
introduced FORESEE F35SQA001G was found on the Xiaomi AX3000T.
Signed-off-by: Erik Servili <serverror@serverror.com>
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
The Xiaomi AX3000T has two hardware revisions. One uses MT7531
switch, and the other uses AN8855 switch. Set "mediatek,switch"
property to "auto" to be compatible with different switches.
Tested-by: Mikhail Zhilkin <csharper2005@gmail.com>
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Synchronize the latest MTK u-boot patches[1]. Some patches have
been amended since last synchronization.
Changes:
* Minor NMBM layer fixes and improvements.
* A new bootmenu shortkey implementation.
* New SPI flash support for en25qx128.
[1] https://github.com/mtk-openwrt/u-boot/tree/mtksoc-20230719
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Remove upstreamed patches:
010-menu-fix-the-logic-checking-whether-ESC-key-is-press.patch [1]
011-menu-add-support-to-check-if-menu-needs-to-be-reprin.patch [2]
012-bootmenu-add-reprint-check.patch [3]
Remove outdated patches:
455-arm-provide-noncached_set_region-prototype-to-fix-build.patch
Some patches have been manually rebased to match the upstream
changes. This patch also fixes the dtc warning for reserved-memory
dts node. If #address-cells and #size-cells are not same as the
root node definitions, the dtc will complain about it.
All defconfigs are refreshed by `make "$board"_defconfig` and
`make savedefconfig`.
[1] ddac69885e
[2] ccdd7948e2
[3] 599652cff1
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Do the same code simplification as was done for ipq807x to avoid code
duplication.
Link: https://github.com/openwrt/openwrt/pull/17907
Signed-off-by: Robert Marko <robimarko@gmail.com>
Add support for Linksys MX2000 (Atlas 6) and MX5500 (Atlas 6 Pro).
These devices are completely identical except for the secondary wifi
chip used for 5Ghz: QCN6102 is used on MX2000 while QCN9024 is used
on MX5500
Speficiations:
* SoC: Qualcomm IPQ5018 (64-bit dual-core ARM Cortex-A53 @ 1.0Ghz)
* Memory: Winbond W634GU6NB-11 (512 MiB DDR3-933)
* Serial Port: 3v3 TTL 115200n8
* Wi-Fi: IPQ5018 (2x2 2.4 Ghz 802.11b/g/n/ax)
* Wi-Fi: MX2000: QCN6102 (2x2:2 5 Ghz 802.11an/ac/ax)
MX5500: QCN9024 (4x4:4 5 Ghz 802.11an/ac/ax)
* Ethernet: IPQ5018 integrated virtual switch connected to an external
QCA8337 switch (4 Ports 10/100/1000 GBASE-T)
* Flash: Macronix MX35UF2GE4AD (256 MiB)
* LEDs: 1x multi-color PWM LED
* Buttons: 1x WPS (GPIO 27 Active Low)
1x Reset (GPIO 28 Acive Low)
Flash instructions (in case of MX2000, else replace with MX5500 images):
1. On OEM firmware, login to the device (typically at http://192.168.1.1) and click 'CA'
in the bottom right corner -> Connectivity -> Manual Upgrade. Alternatively, browse to
http://<router IP>/fwupdate.html.
Upgrade firmware using openwrt-qualcommax-ipq50xx-linksys_mx2000-squashfs-factory.bin image.
Optionally install on second partition, after first boot check actual partition:
fw_printenv -n boot_part
and install firmware on second partition using command in case of 2:
mtd -r -e kernel -n write openwrt-qualcommax-ipq50xx-linksys_mx2000-squashfs-factory.bin kernel
and in case of 1:
mtd -r -e alt_kernel -n write openwrt-qualcommax-ipq50xx-linksys_mx2000-squashfs-factory.bin alt_kernel
2. Installation using serial connection from OEM firmware (default login: root, password: admin):
fw_printenv -n boot_part
In case of 2:
flash_erase /dev/mtd12 0 0
nandwrite -p /dev/mtd12 openwrt-qualcommax-ipq50xx-linksys_mx2000-squashfs-factory.bin
or in case of 1:
flash_erase /dev/mtd14 0 0
nandwrite -p /dev/mtd14 openwrt-qualcommax-ipq50xx-linksys_mx2000-squashfs-factory.bin
After first boot install firmware on second partition:
mtd -r -e kernel -n write openwrt-qualcommax-ipq50xx-linksys_mx2000-squashfs-factory.bin kernel
or:
mtd -r -e alt_kernel -n write openwrt-qualcommax-ipq50xx-linksys_mx2000-squashfs-factory.bin alt_kernel
3. Back to the OEM firmware.
Download firmware from OEM website:
MX2000: https://support.linksys.com/kb/article/585-en/
MX5500: https://support.linksys.com/kb/article/587-en/
From serial or SSH:
fw_printenv boot_part
in case of 1:
mtd -r -e alt_kernel -n write FW_MX2000_1.1.7.210469_prod.img alt_kernel
else in case of 2:
mtd -r -e kernel -n write FW_MX2000_1.1.7.210469_prod.img kernel
Signed-off-by: George Moussalem <george.moussalem@outlook.com>
Link: https://github.com/openwrt/openwrt/pull/17182
Signed-off-by: Robert Marko <robimarko@gmail.com>
Update URL variable to reflect switch to Github for development
The old URL returns HTTP 404
Signed-off-by: Felix Baumann <felix.bau@gmx.de>
Link: https://github.com/openwrt/openwrt/pull/17752
Signed-off-by: Robert Marko <robimarko@gmail.com>
The syntax error prevented the correct creation of all ipq60xx U-Boot environment files: /etc/config/ubootenv and /etc/fw_env.config
Signed-off-by: Ivan Deng <hongba@rocketmail.com>
Link: https://github.com/openwrt/openwrt/pull/17755
Signed-off-by: Robert Marko <robimarko@gmail.com>
Envtools can automatically detect the number of blocks.
Signed-off-by: Paweł Owoc <frut3k7@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17463
Signed-off-by: Robert Marko <robimarko@gmail.com>
Update to latest version. There are no patches that need to be
refreshed.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Link: https://github.com/openwrt/openwrt/pull/17538
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
TP-Link EAP610-Outdoor is a 802.11ax AP claiming AX1800 support. It is
wall or pole mountable, and rated for outdoor use. It can only be
powered via PoE.
Specifications:
---------------
* CPU: Qualcomm IPQ6018 Quad core Cortex-A53
* RAM: 512 MB
* Storage: ESMT PSR1GA30DT 128MB NAND
* Ethernet:
* Gigabit RJ45 port with PoE input
* WLAN:
* 2.4GHz/5GHz
* LEDs:
* Multi-color System LED (Green/Amber)
* Buttons:
* 1x Reset
* UART: 4-pin unpopulated header
* 1.8 V level, Pinout 1 - TX, 2 - RX, 3 - GND, 4 - 1.8V
Installation:
=============
Web UI method
-------------
Set up the device using the vendor's web UI. After that go to
Management->SSH and enable the "SSH Login" checkbox. Select "Save".
The connect to the machine via SSH:
ssh -o hostkeyalgorithms=ssh-rsa <ip_of_device>
Disable signature verification:
cliclientd stopcs
Rename the "-web-ui-factory" image to something less than 63
characters, maintaining the ".bin" suffix.
* Go to System -> Firmware Update.
* Under "New Firmware File", click "Browse" and select the image
* Select "Update" and confirm by clicking "OK".
If the update fails, the web UI should show an error message.
Otherwise, the device should reboot into OpenWRT.
TFTP method
-----------
To flash via tftp, first place the initramfs image on the TFTP server.
setenv serverip <ip of tftp server>
setenv ipaddr <ip in same subnet as tftp server>
tftpboot tplink_eap610-outdoor-initramfs-uImage.itb
bootm
This should boot OpenWRT. Once booted, flash the sysupgrade.bin image
using either luci or the commandline.
The tplink2022 image format
============================
The vendor images of this device are packaged in a format that does
not match any previous tplink formats. In order for flashing to work
from the vendor's web UI, firmware updates need to be packaged in
this format. The `tplink-mkimage-2022.py` is provided for this
purpose.
This script can also analyze vendor images, and extract the required
"support" string. This string is checked by the vendor firmware, and
images with a missing or incorrect string are rejected.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/14922
Signed-off-by: Robert Marko <robimarko@gmail.com>
It is not required to specify the number of blocks as envtools are able
to autodetect it.
Link: https://github.com/openwrt/openwrt/pull/17504
Signed-off-by: Robert Marko <robimarko@gmail.com>
The u-boot LED command "led_loop_done" is missing from the OpenWrt
One NAND flash u-boot. Copy it from the OpenWrt One NOR flash u-boot
default environment to fix this issue.
Fixes: https://github.com/openwrt/openwrt/issues/17310
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Link: https://github.com/openwrt/openwrt/pull/17338
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
It seems that the original patch has been manually modified. The
newly added line number is incorrect.
Fixes: c0581520b1 ("uboot-mediatek: add Routerich AX3000 support")
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Link: https://github.com/openwrt/openwrt/pull/17338
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Specification:
- MT7986 CPU using 2.4GHz and 5GHz WiFi (both AX)
- MT7531 switch
- 512MB RAM
- 128MB NAND flash (MX35LF1GE4AB-Z4I) with two UBI partitions with identical size
- 1 multi color LED (red, green, blue, white) connected via GCA230718 (Same as D-Link M30 A1)
- 3 buttons (WPS, reset, LED on/off)
- 1x 2.5 Gbit WAN port with Maxlinear GPY211C
- 4x 1 Gbit LAN ports
Disassembly:
- There are five screws at the bottom: 2 under the rubber feet, 3 under the label.
- After removing the screws, the white plastic part can be shifted out of the blue part.
- Be careful because the antennas are mounted on the side and the top of the white part.
Serial Interface
- The serial interface can be connected to the 4 pin holes next to/under the antenna cables.
- Note that there is another set of 4 pin holes on the side of the board, it's not used.
- Pins (from front to rear):
- 3.3V (do not connect)
- TX
- RX
- GND
- Settings: 115200, 8N1
MAC addresses:
- MAC address is stored in partition "Odm" at offset 0x81 (for example XX:XX:XX:XX:XX:52)
- MAC address on the device label is ODM + 1 (for example XX:XX:XX:XX:XX:53)
- WAN MAC is the one from the ODM partition (for example XX:XX:XX:XX:XX:52)
- LAN MAC is the one from the ODM partition + 1 (for example XX:XX:XX:XX:XX:53)
- WLAN MAC (2.4 GHz) is the one from the ODM partition + 2 (for example (XX:XX:XX:XX:XX:54)
- WLAN MAC (5 GHz) is the one from the ODM partition + 5 (for example (XX:XX:XX:XX:XX:57)
Flashing via OEM web interface:
- Currently not supported because image crypto is not known
Flashing via recovery web interface:
- This is only working if the first partition is active because recovery images are always flashed to the active partition and OpenWrt can only be executed from the first partition
- Use a Chromium based browser, otherwise firmware upgrade might not work
- Recovery web interface is accessible via 192.168.200.1 after keeping the reset button pressed during start of the device until the LED blinks red
- Upload the recovery image, this will take some time. LED will continue flashing red during the update process
- The after flashing, the recovery web interface redirects to http://192.168.0.1. This can be ignored. OpenWrt is accessible via 192.168.1.1 after flashing
- If the first partition isn't the active partition, OpenWrt will hang during the boot process. In this case:
- Download the recovery image from https://github.com/RolandoMagico/openwrt/releases/tag/M60-Recovery-UBI-Switch (UBI switch image)
- Enable recovery web interface again and load the UBI switch image. This image works on the second partition of the M60
- OpenWrt should boot now as expected. After booting, flash the normal OpenWrt sysupgrade image (for example in the OpenWrt web interface)
- Flashing a sysupgrade image from the UBI switch image will make the first partition the active partition and from now on, default OpenWrt images can be used
Flashing via Initramfs:
- Before switching to OpenWrt, ensure that both partitions contain OEM firmware.
- This can be achieved by re-flashing the same OEM firmware version again via the OEM web interface.
- Flashing via OEM web interface will automatically flash the currently not active partition.
- Open router, connect serial interface
- Start a TFTP server at 192.168.200.2 and provide the initramfs image there
- When starting the router, select "7. Load Image" in U-Boot
- Settings for load address, load method can be kept as they are
- Specify host and router IP address if you use different ones than the default (Router 192.168.200.1, TFTP server 192.168.200.2)
- Enter the file name of the initramfs image
- Confirm "Run loaded data now?" question after loading the image with "Y"
- OpenWrt initramfs will start now
- Before flashing OpenWrt, create a backup of the "ubi" partition. It is required when reverting back to OEM
- Flash sysupgrade image to flash, during flashing the U-Boot variable sw_tryactive will be set to 0
- During next boot, U-Boot tries to boot from the ubi partition. If it fails, it will switch to the ubi1 partition
Reverting back to OEM:
- Boot the initramfs image as described in "Flashing via Initramfs" above
- Copy the backed up ubi partition to /tmp (e.g. by using SCP)
- Write the backup to the UBI partition: mtd write /tmp/OpenWrt.mtd4.ubi.bin /dev/mtd4
- Reboot the device, OEM firmware will start now
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17296
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Referencing commit a1837135e0
Hardware
--------
SoC: Qualcomm Atheros QCA9558
RAM: 128M DDR2 (Nanya NT5TU64M16HG-AC)
FLASH: 128M SPI-NAND (Spansion S34ML01G100TFI00)
WLAN: QCA9558 3T3R 802.11 bgn
ETH: Qualcomm Atheros QCA8337
UART: 115200 8n1
BUTTON: Reset - WPS - "Router" switch
LED: 2x system-LED, 2x wlan-LED, 1x internet-LED,
2x routing-LED
LEDs besides the ethernet ports are controlled
by the ethernet switch
MAC Address:
use address(sample 1) source
label cc:e1:d5:xx:xx:ed art@macaddr_wan
lan cc:e1:d5:xx:xx:ec art@macaddr_lan
wan cc:e1:d5:xx:xx:ed $label
WiFi4_2G cc:e1:d5:xx:xx:ec art@cal_ath9k
Installation from Serial Console
------------
1. Connect to the serial console. Power up the device and interrupt
autoboot when prompted
2. Connect a TFTP server reachable at 192.168.11.10/24
to the ethernet port. Serve the OpenWrt initramfs image as
"openwrt.bin"
3. Boot the initramfs image using U-Boot
ath> tftpboot 0x84000000 openwrt.bin
ath> bootm 0x84000000
4. Copy the OpenWrt sysupgrade image to the device using scp and
install it like a normal upgrade (with no need to keeping config
since no config from "previous OpenWRT installation" could be kept
at all)
# sysupgrade -n /path/to/openwrt/sysupgrade.bin
Installation from Web Interface
------------
To flash just do a firmware upgrade from the stock firmware (Buffalo
branded dd-wrt) with squashfs-factory.bin
Signed-off-by: Edward Chow <equu@openmail.cc>
Link: https://github.com/openwrt/openwrt/pull/17227
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Fixes the following error by backporting upstream update:
```
scripts/dtc/pylibfdt/libfdt_wrap.c: In function ‘_wrap_fdt_next_node’:
scripts/dtc/pylibfdt/libfdt_wrap.c:5581:17: error: too few arguments to function ‘SWIG_Python_AppendOutput’
5581 | resultobj = SWIG_Python_AppendOutput(resultobj, val);
| ^~~~~~~~~~~~~~~~~~~~~~~~
```
Fixes: https://github.com/openwrt/openwrt/issues/17345
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Link: https://github.com/openwrt/openwrt/pull/17352
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The boards where renamed, but BUILD_DEVICES was not adapted. This
variable points to the board name. Without this change the u-boot
binaries are not selected in the configuration.
Copy the u-boot binaries under the BUILD_DEVICES name as it is expected
by the image scripts.
Fixes: 33e23e8922 ("build: d1: add SUPPORTED_DEVICES")
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
No need to pass the option no-warn-rwx-segments. Since v2.12, TF-A
automatically selects it if needed.
A patch is added to revert commit 03a581e2 ("feat(stm32mp1-fdts): remove
RTC clock configuration").
This commit removed RTC clock configuration, as it assumed that it was done
correctly by OPTEE.
But it is not the case. Without this patch the RTC is in a bad state,
consequently the wifi module cannot be initialized.
stm32_rtc 5c004000.rtc: rtc_ck is slow
stm32_rtc 5c004000.rtc: Can't enter in init mode. Prescaler config failed.
stm32_rtc: probe of 5c004000.rtc failed with error -110
sdio mmc1:0001:1: Direct firmware load for brcm/brcmfmac43430-sdio.st,stm32mp135f-dk.bin failed with error -2
brcmfmac: brcmf_sdio_htclk: HT Avail timeout (1000000): clkctl 0x50
Tested on STM32MP135F-DK.
Signed-off-by: Thomas Richard <thomas.richard@bootlin.com>
Link: https://github.com/openwrt/openwrt/pull/17243
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Since v2.12, TF-A automatically selects the no-warn-rwx-segments option if
needed.
So move this hack to the package Makefiles.
Signed-off-by: Thomas Richard <thomas.richard@bootlin.com>
Link: https://github.com/openwrt/openwrt/pull/17243
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Now the tool mkeficapsule is built by default if EFI_LOADER config is set
(which is the case by default for armv7).
This tool needs gnutls, which only exists in the packages feed.
As we don't need mkeficapsule, just disable it.
Tested on STM32MP135F-DK.
Signed-off-by: Thomas Richard <thomas.richard@bootlin.com>
Link: https://github.com/openwrt/openwrt/pull/17243
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Tested on STM32MP135F-DK.
Signed-off-by: Thomas Richard <thomas.richard@bootlin.com>
Link: https://github.com/openwrt/openwrt/pull/17243
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Tenbay WR3000K is an 802.11ax (Wi-Fi 6) router, based on MediaTek MT7981B.
- SoC: MetiaTek MT7981B
- RAM: Hynex H5TQ2G863GFR 512MiB
- Flash: Winbond W25N01GVZEIG 128MiB
- Wi-Fi: MediaTek MT7976C (2.4GHz/5GHz, 802.11ax, 2x2 MIMO, AX3000)
- MediaTek MT7915E: 2.4GHz and 5GHz
- Ethernet: 1x 10/100/1000 Mbps WAN + 3x 10/100/1000 Mbps LAN
- Switch: MediaTek MT7531AE
- UART: J4 (115200 baud)
- LEDs: Power
- Buttons: Reset, WPS
- PWR: 12V/1A DC, 5.5×2.1 connector
| Vendor | OpenWrt Interface | Address | Notes |
|---------|-------------------|---------------|------------------------------------------------|
| WAN | wan | Label MAC | Stored MAC in factory + offset 4, label MAC is Stored MAC - 2 |
| LAN | br-lan | Label MAC+1 | |
| 2.4GHz | phy0-ap0 | Label MAC + 2 | |
| 5GHz | phy1-ap0 | Label MAC + 3 | |
- 0x000000000000-0x000000100000 : "BL2"
- 0x000000100000-0x000000180000 : "u-boot-env"
- 0x000000180000-0x000000380000 : "Factory"
- 0x000000380000-0x000000580000 : "FIP"
- 0x000000580000-0x000003580000 : "ubi"
- 0x000003580000-0x000006580000 : "ubi1"
- 0x000006580000-0x0000065a0000 : "Product"
- 0x0000065a0000-0x000007580000 : "Custom"
- The original partition-Ubi partition-Ubi1 is an AB dual system, and Openwrt only uses Ubi. So flash requires modifying the uboot variable `boot_from=ubi` to ensure that it only starts from Ubi.
- The Product and Custom partitions are original and only exist to align with the original layout; they are not used by OpenWrt.
- id: 0, kernel
- id: 1, rootfs
- id: 2, rootfs_data
- **USB-to-TTL Serial Adapter** (e.g., CH340 or CP2102).
- **Dupont Wires** (male-to-male, 3 wires).
- **PC/Laptop** with a serial communication tool.
- Screwdriver (to open the router case).
1. **OpenWrt Firmware**:
- Download the appropriate `wr3000k-<build_time>-mediatek-filogic-tenbay_wr3000k-squashfs-sysupgrade.bin` firmware file for your router from the [OpenWrt website](https://openwrt.org/).
2. **Serial Communication Tool**:
- Windows: PuTTY, Tera Term.
- Linux/Mac: Minicom, screen.
3. (Optional) **TFTP Server**:
- Install a TFTP server like Tftpd64 or tftp-hpa.
---
1. Open the router casing and locate the **TX, RX, and GND** pins.
2. Connect the router pins to the USB-to-TTL adapter as follows:
- **TX (router)** → **RX (adapter)**
- **RX (router)** → **TX (adapter)**
- **GND (router)** → **GND (adapter)**
3. Do **not** connect the VCC pin to avoid damage.
- **Baud rate**: 115200
- **Data bits**: 8
- **Stop bits**: 1
- **Parity**: None
- **Flow control**: None
---
1. Power on the router and observe the serial terminal output.
2. When prompted (e.g., `Hit any key to stop autoboot: 3`), press the '/' key quickly to interrupt the boot process.
3. You will see the U-Boot Boot Menu:
```plaintext
*** U-Boot Boot Menu ***
1. Factory mode
2. Startup system (Default)
3. Upgrade firmware
4. Upgrade ATF BL2
5. Upgrade ATF FIP
6. Upgrade single image
7. Load image
0. U-Boot console
Press UP/DOWN to move, ENTER to select, ESC/CTRL+C to quit
```
4. Select Option 0 by typing 0 and pressing Enter.
5. Input into
```plaintext
MT7981> setenv boot_from ubi
MT7981> saveenv
Saving Environment to MTD... Erasing on MTD device 'nmbm0'... OK
Writing to MTD device 'nmbm0'... OK
OK
MT7981> printenv
baudrate=115200
boot_from=ubi
...
```
the above indicates system will start from *ubi*.
and then type
```plaintext
MT7981> reset
```
will boot from *ubi*
1. Power on the router and observe the serial terminal output.
2. When prompted (e.g., `Hit any key to stop autoboot: 3`), press the '/' key quickly to interrupt the boot process.
3. You will see the U-Boot Boot Menu:
```plaintext
*** U-Boot Boot Menu ***
1. Factory mode
2. Startup system (Default)
3. Upgrade firmware
4. Upgrade ATF BL2
5. Upgrade ATF FIP
6. Upgrade single image
7. Load image
0. U-Boot console
Press UP/DOWN to move, ENTER to select, ESC/CTRL+C to quit
```
4. Choose Option 3: Upgrade Firmware
Enter Upgrade Mode
Select Option 3 by typing 3 and pressing Enter.
Upgrade Methods
You will be prompted to choose between:
```plaintext
*** Upgrading Firmware ***
Run image after upgrading? (Y/n): y
Available load methods:
0 - TFTP client (Default)
1 - Xmodem
2 - Ymodem
3 - Kermit
4 - S-Record
5 - RAM
Select (enter for default): 0
Input U-Boot's IP address: 192.168.1.1
Input TFTP server's IP address: 192.168.1.10
Input IP netmask: 255.255.255.0
Input file name: wr3000k-<build_time>-mediatek-filogic-tenbay_wr3000k-squashfs-sysupgrade.bin
```
Type Enter to proceed. The router will erase the old firmware and write the new one.
Signed-off-by: Jianyu Zhuang <xzjianyu@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17172
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Specifications:
* SoC: Qualcomm IPQ8072A (64-bit Quad-core Arm Cortex-A53 @ 1.4 GHz)
* Memory: 2x ESMT M15T4G16256A-DEBG2G (1 GiB DDR3-1866 13-13-13)
* Serial Port: 3v3 TTL 115200n8
* Wi-Fi: QCA5054 (4x4 5 GHz 802.11ax)
* Wi-Fi: QCN5024 (2x2 2.4 GHz 802.11b/g/n/ax)
* Ethernet: AR8031 (10/100/1000BASE-T)
* Flash: Winbond W29N01HZSINF (128 MiB)
* LEDs: 1x Blue Status (GPIO 42 Active High)
* Buttons: 1x Reset (GPIO 50 Active Low)
Installation Instructions (Serial+TFTP):
1. Solder 4 pin header to JP1 and bridge pads of R58 and R62.
2. Connect 3V3 TTL port to TX, RX, and GND, which are positions 1, 2, and 3 respectively.
Be sure to crossover TX and RX.
3. Copy RAM firmware
openwrt-qualcommax-ipq807x-tplink_eap620hd-v1-initramfs-uImage.itb
to a TFTP server's root that is in the same subnet as your AP.
4. Power up the AP hold Ctrl+B in the serial console (115200n8) until autoboot is halted.
5. Run the following commands in the U-boot prompt:
# setenv serverip <TFTP server addr>
# setenv ipaddr <addr of AP>
# tftpboot 0x44000000 openwrt-qualcommax-ipq807x-tplink_eap620hd-v1-initramfs-uImage.itb
# bootm
You may need to type Ctrl+C and Enter before running these commands
to clear invisible characters from the buffer.
6. Run the following command in a terminal to copy the sysupgrade image
to be installed (check IP address):
$ scp -O openwrt-qualcommax-ipq807x-tplink_eap620hd-v1-squashfs-sysupgrade.bin root@192.168.1.1:/tmp/
7. Activate the OpenWrt serial console and run the following commands:
# cd /tmp
# sysupgrade -n openwrt-qualcommax-ipq807x-tplink_eap620hd-v1-squashfs-sysupgrade.bin
8. The AP will reboot and OpenWrt will be successfully installed.
Known Issues:
* 5GHz radio instability (upstream current ath11k build bug maybe?)
Device support directly followed from EAP660HDv1 support
Links: #15832
Signed-off-by: Shymon Samsel <ssamsel@umass.edu>
Link: https://github.com/openwrt/openwrt/pull/17254
Signed-off-by: Robert Marko <robimarko@gmail.com>
Specifications:
- Device: ASUS 4g-AX56
- SoC: MT7621AT
- Flash: 128MB
- RAM: 512MB
- Switch: 1 WAN, 4 LAN (10/100/1000 Mbps)
- WiFi: MT7905 2x2 2.4G + MT7975 2x2 5G
- LTE : Fibocom FG621-EA
- LEDs: 1x POWER (white, configurable)
1x 2.4G (white, not configurable)
1x 5G (white, not configurable)
1x WAN (white, not configurable)
1x 3G/4G (white, not configurable)
3x signal (white, not configurable)
Flash by U-Boot TFTP method:
- Configure your PC with IP 192.168.0.2
- Set up TFTP server and put the factory.bin image on your PC
- Connect serial port(rate:115200) and turn on AP, then interrupt "U-Boot Boot Menu" by hitting any key
Select "2. Upgrade firmware"
Press enter when show "Run firmware after upgrading? (Y/n):"
Select 0 for TFTP method
Input U-Boot's IP address: 192.168.0.1
Input TFTP server's IP address: 192.168.0.2
Input IP netmask: 255.255.255.0
Input file name: openwrt-ramips-mt7621-asus_4g-ax56-squashfs-factory.bin
- Restart AP aftre see the log "Firmware upgrade completed!"
Notice:
- LTE module is disable after flash openwrt image so you must active LTE by following two AT command
echo -e "AT+GTAUTOCONNECT=1\r\n" > /dev/ttyUSB0
echo -e "AT+GTRNDIS=1,1\r\n" > /dev/ttyUSB0
- After finish AT command once, you don't need to input command later even if reboot/restore default
Signed-off-by: Chuncheng Chen <ccchen1984@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16752
Signed-off-by: John Crispin <john@phrozen.org>
NRadio C8-668GL is a Wi-Fi 6 5G cellular router based on MediaTek MT7981B SoC.
- **SoC**: MediaTek MT7981B (2x Cortex-A53, 1.3GHz)
- **RAM**: Nanya NT5AD512M16C4-JR 1GB DDR4
- **Flash**: ESMT FC51L08SFY3A 8GB eMMC
- **Ethernet**:
- 1x 2.5GbE (via GMAC0 and GPY211 PHY, shared with MT7531AE)
- 3x 10/100/1000 Mbps (via MT7531AE, connected to GMAC0)
- 5G Modem: GMAC1 (via GPY211 PHY - RTL8125BG - RM520N-GL)
- **Wi-Fi**: MediaTek MT7976CN (2.4GHz/5GHz, 802.11ax, 2x2 MIMO, AX3000)
- **Buttons**: Reset, WPS
- **LEDs**: Power, 5G, 4G, WiFi
- **SIM Slot**: 1x Nano SIM
- **5G Modem**: Quectel RM520N-GL (Snapdragon™ X62)
- **Power**: 12V/2A DC, 5.5×2.1 connector
The MAC addresses are derived from the `fac_mac` field in the `bdinfo` partition, formatted as `fac_mac = HWMAC`. The allocation is as follows:
| Vendor | OpenWrt Interface | Address | Notes |
|---------|-------------------|---------------|------------------------------------------------|
| LAN | br-lan | Label MAC | Default |
| WAN | lan4 | Label MAC+1 | Only when lan4 is switched to WAN |
| 2.4GHz | phy0-ap0 | Label MAC | |
| 5GHz | phy1-ap0 | Label MAC | (Local Admin bit set) |
| Modem | eth1 | Label MAC+2 | |
1. Log in to the router via `http://192.168.66.1`/.
2. Upgrade the official firmware to dual-system mode.
3. Select **Burn second system** and upload the `sysupgrade.bin` image.
- Download the image from the OpenWrt build system or build it yourself using the OpenWrt buildroot.
4. Wait for 30 seconds and click **Switch system**.
5. The device will reboot and switch to OpenWrt.
Set the U-Boot environment variable `boot_system=0` and reboot:
```bash
fw_setenv boot_system 0
```
Power off the router, hold the **WPS button**, and power it back on.
1. Rename the stock firmware file to **`recovery.bin`**.
2. Set your PC's Ethernet IP to **192.168.1.88** and connect it to the lan1 port on the router.
3. Run a TFTP server and place the `recovery.bin` file in its root directory.
4. Power off the router, press and hold the **Reset button**, and power it back on.
5. Release the Reset button when the TFTP server shows activity.
6. Wait for the router to flash the firmware and reboot automatically.
- By default, `lan4` is part of `br-lan` and uses the label MAC address.
- To query the RM520N-GL module, use the following command:
```bash
cat /dev/ttyUSB2 & printf 'ATI\r\n' > /dev/ttyUSB2
```
Signed-off-by: Yaoguang Bai <0xdeadc0de@badguys.club>
Link: https://github.com/openwrt/openwrt/pull/17093
Signed-off-by: John Crispin <john@phrozen.org>
Linksys MR7350 is a 802.11ax Dual-band router/AP.
Specifications:
* CPU: Qualcomm IPQ6000 Quad core Cortex-A53(A73) 1.5GHz
* RAM: 512MB of DDR3
* Storage: 256Mb NAND
* Ethernet: 5x1G RJ45 ports (QCA8075)
* WLAN:
* 2.4GHz: Qualcomm QCN5022 2x2 802.11b/g/n/ax 574 Mbps PHY rate
* 5GHz: Qualcomm QCN5052 2x2@80MHz or 802.11a/b/g/n/ac/ax 1201 Mbps PHY rate
* LED-s:
* RGB system led
* USB blue led
* Buttons: 1x Soft reset 1x WPS
* Power: 12V DC Jack
Installation instructions:
Open Linksys Web UI - http://192.168.1.1/ca or http://10.65.1.1/ca depending on your setup.
Login with your admin password. The default password can be found on a sticker under the device.
To enter into the support mode, click on the “CA” link and the bottom of the page.
Open the “Connectivity” menu and upload the squash-factory image with the “Choose file” button.
Click start. Ignore all the prompts and warnings by click “yes” in all the popups.
The Wifi radios are turned off by default. To configure the router, you will need to connect your computer to the LAN port of the device.
Then you would need to write openwrt to the other partition for it to work
- First Check booted partition:
fw_printenv -n boot_part
- Change the partition:
fw_setenv boot_part 1
or
fw_setenv boot_part 2
depending on the current partition
- Then install Openwrt to the other partition if booted in slot 1:
mtd -r -e alt_kernel -n write openwrt-qualcommax-ipq60xx-linksys_mr7350-squashfs-factory.bin alt_kernel
- If in slot 2:
mtd -r -e kernel -n write openwrt-qualcommax-ipq60xx-linksys_mr7350-squashfs-factory.bin kernel
Co-Authored-by: Chukun Pan <amadeus@jmu.edu.cn>
Co-Authored-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Vladyslav Andreichykov <vladdrako007@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/14807
Signed-off-by: Robert Marko <robimarko@gmail.com>
Add U-Boot replacement loader for the MERCUSYS MR90X. This is required
to increase available flash space in OpenWrt.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16744
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This commit adds OpenWrt U-Boot layout support for Routerich AX3000. The
aims:
1. Get open-source U-Boot;
2. Get maximum available free space in OpenWrt.
Install
-------
1. Copy OpenWrt ubootmod-bl31-uboot.fip, ubootmod-preloader.bin, to the
/tmp folder of the router using scp.
2. Make mtd partitions backups:
http://192.168.1.1/cgi-bin/luci/admin/system/flash -> Save mtdblock
contents
3. Install kmod-mtd-rw:
```
opkg update && opkg install kmod-mtd-rw
```
4. Write FIP and preloader:
```
insmod mtd-rw i_want_a_brick=1
mtd unlock BL2
mtd erase BL2
mtd write /tmp/ubootmod-preloader.bin BL2
mtd unlock FIP
mtd erase FIP
mtd write /tmp/ubootmod-bl31-uboot.fip FIP
```
5. Copy OpenWrt ubootmod-initramfs-recovery.itb to the tftp server root
with IP 192.168.1.254.
6. Reboot router:
```
reboot
```
U-Boot will automatically download from the tftp server and boot OpenWrt
initramfs system.
7. Copy OpenWrt ubootmod-squashfs-sysupgrade.itb to the /tmp dir of the
router using scp.
8. Run sysupgrade:
```
sysupgrade -n /tmp/squashfs-sysupgrade.itb
```
Recovery
--------
1. Place OpenWrt initramfs-recovery.itb image (with original name) on the
tftp server (IP: 192.168.1.254).
2. Press "reset" button and power on the router. After ~10 sec release the
button.
3. Use OpenWrt initramfs system for recovery.
BL2 and FIP recovery
--------------------
Use mtk_uartboot and UART connection if BL2 or FIP in UBI is destroyed:
Link: https://github.com/981213/mtk_uartboot
Return to stock:
----------------
1. Copy partition backups (BL2.bin and FIP.bin) to the /tmp dir of the
router using scp.
2. Install kmod-mtd-rw:
```
opkg update && opkg install kmod-mtd-rw
```
3. Restore stock U-Boot and reboot:
```
insmod mtd-rw i_want_a_brick=1
mtd unlock BL2
mtd erase BL2
mtd write /tmp/BL2.bin BL2
mtd unlock FIP
mtd erase FIP
mtd write /tmp/FIP.bin FIP
reboot
```
4. Open U-Boot web recovery, upload stock firmware image and start
upgrade.
Link: http://192.168.1.1
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16791
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This commit adds support for two variants of the already supported router
Acer Predator Connect W6: The Acer Predator Connect W6d (W6 without 6 GHz
wifi) and the Acer Connect Vero W6m (W6 without 2.5G eth1 port, usb3 port,
and the 6 on-board gpio RGB LEDs, and with a KTD2026 RGB LED controller
instead of the KTD2061 LED controller of the W6/W6d).
The device tree for the W6m refers to the KTD202x driver suggested in
PR #16860.
Patching target/linux/mediatek/filogic/base-files/lib/upgrade/platform.sh
removes the code repetition in (old) lines 121 to 124 on the occasion.
This is the last of four commits into which the original commit was split
to make reviews easier and more targeted.
Signed-off-by: George Oldfort <openwrt@10099.de>
Link: https://github.com/openwrt/openwrt/pull/16861
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
In order to prepare OpenWrt support for other Acer W6 devices and to adapt
the procedure to read and set mac addresses which other devices of the same
target are using (instead of needing an additional script and creating an
additional structure in the file system), this commit
- reads device mac addresses from u-boot environment
- avoids the detour via the file system to set the mac addresses
- drops redundant file /lib/preinit/05_extract_factory_data.sh
The idea and the implementation were thankfully taken from PR #16410.
This is the second of four commits into which the original commit was split
to make reviews easier and more targeted.
Signed-off-by: George Oldfort <openwrt@10099.de>
Link: https://github.com/openwrt/openwrt/pull/16861
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add ATF for stm32 boards, with the first being STM32MP135F-DK.
Signed-off-by: Thomas Richard <thomas.richard@bootlin.com>
Link: https://github.com/openwrt/openwrt/pull/16716
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add U-Boot for stm32 boards, with the first being STM32MP135F-DK.
Signed-off-by: Thomas Richard <thomas.richard@bootlin.com>
Link: https://github.com/openwrt/openwrt/pull/16716
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add OP-TEE for stm32 boards, with the first being STM32MP135F-DK.
Signed-off-by: Thomas Richard <thomas.richard@bootlin.com>
Link: https://github.com/openwrt/openwrt/pull/16716
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The GatoNetworks GDSP is a re-branded version of the R5000 5G Industrial
router from Yinghua Technologies.
Advantages over stock bootloader:
1. supports serving the external GPIO WDT, allowing for easier work in U-Boot
shell
2. supports cool features like netconsole, easy recovery, scripting and so on
3. allows using FIT image and image integrity validation
and ultimately gives you much more flexibility to implement your tweaks.
Known issues
------------
To make it easier to operate the device, console I/O multiplexing support has
been enabled in U-Boot configuration. Setting I/O related U-Boot environment
variables to something like "serial,nc" will have the desired effect. Still,
setting these variables to such a value in the persistent environment will
lead to a crash and make it impossible to boot the system or recover it. I
decided to leave it on anyway since I think it can be very practical in
development.
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
The Sophos AP15C uses the same hardware as the AP15, but has a reset button.
Based on:
commit 6f1efb2898 ("ath79: add support for Sophos AP100/AP55 family")
author Andrew Powers-Holmes <andrew@omnom.net>
Fri, 3 Sep 2021 15:53:57 +0200 (23:53 +1000)
committer Hauke Mehrtens <hauke@hauke-m.de>
Sat, 16 Apr 2022 16:59:29 +0200 (16:59 +0200)
Unique to AP15C:
- Reset button
- External RJ45 serial console port
Flashing instructions:
This firmware can be flashed either via a compatible Sophos SG or XG
firewall appliance, which does not require disassembling the device, or via
the U-Boot console available on the internal UART header.
To flash via XG appliance:
- Register on Sophos' website for a no-cost Home Use XG firewall license
- Download and install the XG software on a compatible PC or virtual
machine, complete initial appliance setup, and enable SSH console access
- Connect the target AP device to the XG appliance's LAN interface
- Approve the AP from the XG Web UI and wait until it shows as Active
(this can take 3-5 minutes)
- Connect to the XG appliance over SSH and access the Advanced Console
(Menu option 5, then menu option 3)
- Run `sudo awetool` and select the menu option to connect to an AP via
SSH. When prompted to enable SSH on the target AP, select Yes.
- Wait 2-3 minutes, then select the AP from the awetool menu again. This
will connect you to a root shell on the target AP.
- Copy the firmware to /tmp/openwrt.bin on the target AP via SCP/TFTP/etc
- Run `mtd -r write /tmp/openwrt.bin astaro_image`
- When complete, the access point will reboot to OpenWRT.
To flash via U-Boot serial console:
- Configure a TFTP server on your PC, and set IP address 192.168.99.8 with
netmask 255.255.255.0
- Copy the firmware .bin to the TFTP server and rename to 'uImage_AP15C'
- Open the target AP's enclosure and locate the 4-pin 3.3V UART header [4]
- Connect the AP ethernet to your PC's ethernet port
- Connect a terminal to the UART at 115200 8/N/1 as usual
- Power on the AP and press a key to cancel autoboot when prompted
- Run the following commands at the U-Boot console:
- `tftpboot`
- `cp.b $fileaddr 0x9f070000 $filesize`
- `boot`
- The access point will boot to OpenWRT.
Signed-off-by: David Lutz <kpanic@hirnduenger.de>
Using the arrow keys to navigate the U-Boot menu often leads to being
dropped into the U-Boot shell unexpectedly.
This can be prevented in most cases by improving the logic to detect the
arrow key ESC sequence and only reprinting the menu if actually needed.
Also enable CONFIG_SERIAL_RX_BUFFER for all boards as it helps preventing
the remaining cases.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This commit adds u-boot support for the NanoPi R3S.
Signed-off-by: Kevin Zhang <kevin@kevinzhang.me>
Link: https://github.com/openwrt/openwrt/pull/16738
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Update package to the latest stable version and drop upstreamed patches:
0001-arm-mvebu-turris_omnia-Enable-LTO-by-default-on-Turr.patch
100-mvebu-armada-8k-respect-CONFIG_DISTRO_DEFAULTS.patch
Other patches automatically refreshed (line numbers only)
Add custom config flags to disable building efimkcapsule by default.
This introduces a dependency to GnuTLS which is not present and we do
not need it here.
Signed-off-by: Stefan Kalscheuer <stefan@stklcode.de>
Link: https://github.com/openwrt/openwrt/pull/16676
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add support for NEC Aterm series devices based on QCA9558.
The following devices have almost the same hardware, so the same U-Boot
binary can be used for them.
- NEC Aterm WG1400HP
- NEC Aterm WG1800HP
- NEC Aterm WG1800HP2
By the way, on NetBSD-based NEC Aterm devices, only 0x20000 (128KiB) is
available for a bootloader on the flash chip and that limitation is too
small for mainline U-Boot with the default options. So many
features/commands not required for booting OpenWrt and recoverying are
disabled on that devices, like the followings.
- networking support
- FIT support
- all decompression methods support
etc...
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16297
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add initial support for Qualcomm Atheros QCA955x series SoCs.
This support was based on the QCA956x support, QSDK, GPL tar of TP-Link
Archer C5 v1.20.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16297
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Building uboot-mediatek fails with GCC-14, uboot v2024.10 and
CONFIG_SYS_NONCACHED_MEMORY defined with error:
cmd/cache.c: In function 'do_dcache':
cmd/cache.c:57:25: error: implicit declaration of function
'noncached_set_region' [-Wimplicit-function-declaration]
This is caused by upstream commit 7d6cee2cd0e2e2507aca1e3a6fe0e2cb241a116e
("cmd: cache: Remove weak functions") as this removes weak functions in
favor of arch-specific definitions.
This patch adds the function prototype for `noncached_set_region` to
arch-specific header for ARM. It also adds an include in cmd/cache.c to
make the function available there.
Fixes: #16697
Fixes: f8c22c9bff ("uboot-mediatek: update to U-Boot 2024.10")
Signed-off-by: Jonas Jelonek <jelonek.jonas@gmail.com>
[@dangowrt refreshed patch]
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This tool will load the uboot environment to /var/run/uboot-env/. This allows
more efficient use when accessing multiple variables.
Signed-off-by: John Crispin <john@phrozen.org>
Platform specified fiptool files was moved before lf-6.6.23-2.0.0 bump.
But PLAT_FIPTOOL_HELPER_MK still pointed to old location.
This cause problems with ls-ddr-phy build.
This patch fix PLAT_FIPTOOL_HELPER_MK path.
Fixes: 0ec659bd2b ("tfa-layerscape: Bump to lf-6.6.23-2.0.0")
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16472
Signed-off-by: Robert Marko <robimarko@gmail.com>
Add support for the ArmSoM Sige7 board.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Link: https://github.com/openwrt/openwrt/pull/16462
Signed-off-by: Nick Hainke <vincent@systemli.org>
Add u-boot support based on the kernel dts introduced in d1016446 and
the GL-MT6000 u-boot support in fe10f974.
The pcie-mediatek-gen3 kernel driver doesn't like hotplug, so to work in
PCIe mode, the 5G modem on this device needs to be switched on by u-boot
before starting the kernel. Include an init_modem step in the boot_system
action to set the relevant gpios. (The factory bootloader does the same,
using Mediatek SDK-specific gpio_power_clr and gpio_pull_up.)
Ideally the modem would be started using gpio-hog in the device tree, but
this will need to wait until mediatek gpio-hog support is fixed upstream:
https://lore.kernel.org/u-boot/6ef2583e85eea60560d7776377d662779e7c44e5.1722419839.git.chris@arachsys.com/
The bootloader can be replaced using the built-in web interface of the
factory bootloader. Hold the reset button for five seconds while powering
on the device and it will boot into a recovery http server.
http://192.168.1.1/uboot.html and http://192.168.1.1/bl2.html can then
be used to upload openwrt-mediatek-filogic-glinet_gl-x3000-bl31-uboot.fip
and openwrt-mediatek-filogic-glinet_gl-x3000-preloader.bin respectively.
Alternatively, from a root shell on the running system, unlock the boot
partition with
echo 0 >/sys/block/mmcblk0boot0/force_ro
then write openwrt-mediatek-filogic-glinet_gl-x3000-bl31-uboot.fip to
/dev/mmcblk0p4 and openwrt-mediatek-filogic-glinet_gl-x3000-preloader.bin
to /dev/mmcblk0boot0.
Signed-off-by: Chris Webb <chris@arachsys.com>
Link: https://github.com/openwrt/openwrt/pull/15645
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This patch add a version to uboot patches to help identify in
futures updates when they were upstreamed.
Signed-off-by: Antonio Flores <antflores627@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16275
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
1- The NanoPi R6C is a SBC by FriendlyElec based on the Rockchip RK3588s.
It comes with 4GB or 8GB of RAM, a microSD card slot, optional 32GB eMMC
storage, one M.2 M-Key connector, one RTL8211F 1GbE and one RTL8125
2.5GbE Ethernet port, one USB 2.0 Type-A and one USB 3.0 Type-A port, a
HDMI port, a 30-pin GPIO header as well as multiple buttons and LEDs.
2- Renamed 000-backport-upstream-dts-sync.patch -> 000-v2024.10-rc1-backport-upstream-dts-sync.patch
to add the version when was applied upstream
Signed-off-by: Antonio Flores <antflores627@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16275
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Specification is similar to other devices of the MT Stuart series:
* Mediatek MT7988D (3x Cortex-A73, up to 1.8 GHz clock speed)
* 8 GiB eMMC
* 2 GiB DDR4 RAM
* 2500M/1000M/100M LAN port
* 10000M/5000M/2500M/1000M/100M/10M WAN port
* MT7992 Tri-band (2.4G, 5G, 6G) 2T2R+3T3R+3T3R 802.11be Wi-Fi
* Renesas DA14531MOD Bluetooth
* 2 buttons (Reset, Mesh/WPS)
* uC-controlled RGB LED via I2C
* 2x LED for the 2.5G port, 3x LED for the 10G port
* 3.3V-level 115200 baud UART console via 4-pin Dupont connector
exposed at the bottom of the device
* USB-C PD power input
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This commit adds support for netis N6 WiFi 6 router.
Specification
-------------
- SoC : MediaTek MT7621AT, MIPS, 880 MHz
- RAM : 256 MiB
- Flash : NAND 128 MiB (ESMT PSU1GA30DT)
- WLAN : MT7905DAN + MT7975DN
- 2.4 GHz : b/g/n/ax, 574 Mbps, MIMO 2x2
- 5 GHz : a/n/ac/ax, 1201 Mbps, MIMO 2x2
- Ethernet : 10/100/1000 Mbps x5 (1x WAN, 4x LAN)
- USB : 1x 3.0
- UART : 3.3V, 115200n8
- Buttons : 1x Reset
1x WPS
- LEDs : 1x Power (green)
1x System (green)
1x WAN (green)
1x WiFi 2.4 GHz (green), controlled by phy
1x WiFi 5 GHz (green), controlled by phy
1x WPS (green)
1x USB (green)
5x ethernet leds (green), controlled by switch
- Power : 12 VDC, 1.5 A
Installation
------------
1. Update the router using stock firmware web interface and OpenWrt
factory.bin image.
Recovery and return to stock
----------------------------
1. Assign your PC a static IP 192.168.1.2 and connect to the router using
the ethernet cable;
2. Power off the router;
3. Press Reset button, power on the router and wait until ethernet led
start blinking;
4. Release the button;
5. Open http://192.168.1.1/ (N6 System Recovery Mode) in your browser;
6. Upload OpenWrt factory.bin (or stock firmware *.bin) image and proceed
with upgrade.
MAC addresses
-------------
+---------+-------------------+
| | MAC example |
+---------+-------------------+
| LAN | dc:xx:xx:49:xx:04 |
| WAN | dc:xx:xx:49:xx:05 |
| WLAN 2g | dc:xx:xx:19:xx:06 |
| WLAN 5g | dc:xx:xx:79:xx:06 |
+---------+-------------------+
The WLAN MAC prototype was found in 'Factory', 0x4
The LAN MAC was found in 'Factory', 0x7ef20
The WAN MAC was found in 'Factory', 0x7ef26
Known issue
-----------
2.4 GHz WLAN doesn't start with mt76 driver.
Probable reason:
Original Netis N6 EEPROM contains wrong MT_EE_WIFI_CONF value (0xd2).
Other routers with the same WLAN hardware (e.g., Routerich AX1800)
have MT_EE_WIFI_CONF = 0x92.
Workaround (already included in this commit):
Extract EEPROM to a file at the first time boot and change
MT_EE_WIFI_CONF (offset 0x190) value from 0xd2 to 0x92. See
/etc/hotplug.d/firmware/11-mt76-caldata for details.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16322
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Specifications:
- Device: DNA Valokuitu Plus EX400
- SoC: MT7621A
- Flash: 256MB NAND
- RAM: 256MB
- Ethernet: Built-in, 2 x 1GbE
- Wifi: MT7603 2.4 GHz, MT7615 5 GHz (4x internal antennas)
- USB: 1x 3.0
- LED: 1x green/red, 1x green
- Buttons: Reset
MAC addresses:
- LAN: u-boot 'ethaddr' (label)
- WAN: label + 1
- 2.4 GHz: label + 6
- 5 GHz: label + 7
Serial:
There is a black block connector next to the red ethernet connector. It
is accessible also through holes in the casing.
Pinout (TTL 3.3V)
+---+---+
|Tx |Rx |
+---+---+
|Vcc|Gnd|
+---+---+
Firmware:
The vendor firmware is a fork of OpenWrt (Reboot) with a kernel version
4.4.93. The flash is arranged as below and there is a dual boot
mechanism alternating between rootfs_0 and rootfs_1.
+-------+------+------+-----------+-----------+
| | env1 | env2 | rootfs_0 | rootfs_1 |
| +------+------+-----------+-----------+
| | UBI volumes |
+-------+-------------------------------------+
|U-Boot | UBI |
+-------+-------------------------------------+
|mtd0 | mtd1 |
+-------+-------------------------------------+
| NAND |
+---------------------------------------------+
In OpenWrt rootfs_0 will be used as a boot partition that will contain the
kernel and the dtb. The squashfs rootfs and overlay are standard OpenWrt
behaviour.
+-------+------+------+-----------+--------+------------+
| | env1 | env2 | rootfs_0 | rootfs | rootfs_data|
| +------+------+-----------+--------+------------+
| | UBI volumes |
+-------+-----------------------------------------------+
|U-Boot | UBI |
+-------+-----------------------------------------------+
|mtd0 | mtd1 |
+-------+-----------------------------------------------+
| NAND |
+-------------------------------------------------------+
U-boot:
With proper serial access booting can be halted to U-boot by pressing any
key. TFTP and flash writes are available, but only the first one has been
tested.
NOTE: Recovery mode can be accessed by holding down the reset button while
powering on the device. The led 'Update' will show a solid green light
once ready. A web server will be running at 192.168.1.1:80 and it will
allow flashing a firmware package. You can cycle between rootfs_0 and
rootfs_1 by pressing the reset button once.
Root password:
With the vendor web UI create a backup of your settings and download the
archive to your computer. Within the archive in the file
/etc/shadow replace the password hash for root with that of a password you
know. Restore the configuration with the vendor web UI and you will have
changed the root password.
SSH access:
You might need to enable the SSH service for LAN interface as by default
it's enabled for WAN only.
Installing OpenWrt:
With the vendor web UI install the OpenWrt factory image. Alternatively,
ssh to the device and use sysupgrade -n from cli.
Finalize by installing the OpenWrt sysupgrade image to get a fully
functioning system.
Reverting to the vendor firmware:
Boot with OpenWrt initramfs image
- Remove volumes rootfs_0, rootfs and rootfs_data and create vendor
volumes.
ubirmvol /dev/ubi0 -n 2
ubirmvol /dev/ubi0 -n 3
ubirmvol /dev/ubi0 -n 4
ubimkvol /dev/ubi0 -N rootfs_0 -S 990
ubimkvol /dev/ubi0 -N rootfs_1 -S 990
Power off and enter to the U-boot recovery to install the vendor
firmware.
Known issues:
- MACs for wifi are stored in currently unknown place but it seems
to persist over power-off. They might be stored on the chip.
Signed-off-by: Mauri Sandberg <maukka@ext.kapsi.fi>
[rmilecki: try NVMEM for MACs]
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
move nanopc-t6 recipes above rock 5b.
Fixes: 9482341a47 ("rockchip: add support for nanopc t6")
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Link: https://github.com/openwrt/openwrt/pull/16340
Signed-off-by: Robert Marko <robimarko@gmail.com>
Specifications:
* SoC: Qualcomm IPQ8072A (64-bit Quad-core Arm Cortex-A53 @ 2200MHz)
* Memory: 2x ESMT M15T4G16256A-DEBG2G (1 GiB DDR3-1866 13-13-13)
* Serial Port: 3v3 TTL 115200n8
* Wi-Fi: QCN5054 (4x4 5 GHz 802.11ax)
* Wi-Fi: QCN5024 (4x4 2.4 GHz 802.11b/g/n/ax)
* Ethernet: QCA8081 (10/100/1000/2.5GBASE-T)
* Flash: Winbond W29N01HZSINF (128 MiB)
* LEDs: 1x Blue Status (GPIO 42 Active High)
* Buttons: 1x Reset (GPIO 50 Active Low)
Installation Instructions (Serial+TFTP):
1. Solder 4 pin header to JP1 and bridge pads of R58 and R62.
2. Connect 3V3 TTL port to TX, RX, and GND, which are positions 1, 2,
and 3 respectively. Be sure to crossover TX and RX.
3. Copy RAM firmware image
openwrt-qualcommax-ipq807x-tplink_eap660hd-v1-initramfs-uImage.itb
to TFTP server root, available at 192.168.10.1.
4. Connect PoE ethernet cable to the RJ45 port and hold Ctrl+B in the
serial console (115200 baud) until autoboot is halted.
5. Run the following commands in the U-boot prompt:
# tftpboot 0x44000000 openwrt-qualcommax-ipq807x-tplink_eap660hd-v1-initramfs-uImage.itb
# bootm
You may need to type Ctrl+C and Enter before running these commands
to clear invisible characters from the buffer.
6. Run the following command in a terminal to copy the sysupgrade image
to be installed (check IP address):
$ scp openwrt-qualcommax-ipq807x-tplink_eap660hd-v1-squashfs-sysupgrade.bin root@192.168.1.1:/tmp/
7. Activate the OpenWrt serial console and run the following commands:
# cd /tmp
# sysupgrade -n openwrt-qualcommax-ipq807x-tplink_eap660hd-v1-squashfs-sysupgrade.bin
8. The AP will reboot and OpenWrt will be successfully installed.
Signed-off-by: George Witt <george.witt@nltsproject.org>
Link: https://github.com/openwrt/openwrt/pull/15832
Signed-off-by: Robert Marko <robimarko@gmail.com>
GCC errors on returning int in void function now.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16348
Signed-off-by: Robert Marko <robimarko@gmail.com>
Adds u-boot config for access to system env variables on this board
Signed-off-by: Ivan Pavlov <AuthorReflex@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16312
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Radxa ROCK 3B is a Pico-ITX form factor SBC[1] using the Rockchip
RK3568(J).
Hardware
--------
- Rockchip RK3568(J) SoC
- Quad A55 CPU
- Mali-G52 GPU
- 1 TOPS @ INT8 NPU
- 2GB/4GB/8GB LPDDR4 RAM
- eMMC connector
- Micro SD Card slot
- NVMe SSD through the M.2 M Key (2-lane PCIe 3.0)
- SPI Flash for bootloader
- 2x Gigabit ethernet port (one supports PoE with add-on PoE HAT)
- 1x M.2 E Key socket with SDIO, UART and USB interfaces
- 1x M.2 B Key socket with PCIe, SATA, and USB interfaces
- 1x SIM card socket
- 1x USB 3.0 Type-A HOST port
- 1x USB 3.0 Type-A OTG port
- 2x USB 2.0 Type-A HOST ports
- 40 Pin GPIO header
[1] https://radxa.com/products/rock3/3b
Installation
------------
Uncompress the OpenWrt sysupgrade and write it to a micro SD card or
internal eMMC using dd.
Signed-off-by: FUKAUMI Naoki <naoki@radxa.com>
Link: https://github.com/openwrt/openwrt/pull/16185
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Radxa ROCK 3C is a high-performance, low-cost SBC[1] using the
Rockchip RK3566.
Hardware
--------
- Rockchip RK3566 SoC
- Quad A55 CPU
- Mali-G52-2EE GPU
- 1 TOPS @ INT8 NPU
- 1GB/2GB/4GB LPDDR4 RAM
- eMMC connector
- Micro SD Card slot
- NVMe SSD through the M.2 M Key connector(2230) or M.2 Extension
board(2232/2260/2280)
- SATA through the Radxa Penta SATA HAT
- 1x Gigabit ethernet port(supports PoE with add-on PoE HAT)
- WiFi6/BT5.4 (not supported yet on OpenWrt)
- 1x USB 3.0 Type-A HOST port
- 2x USB 2.0 Type-A HOST ports
- 1x USB 2.0 Type-A OTG port
- 40 Pin GPIO header
[1] https://radxa.com/products/rock3/3c
Installation
------------
Uncompress the OpenWrt sysupgrade and write it to a micro SD card or
internal eMMC using dd.
Signed-off-by: FUKAUMI Naoki <naoki@radxa.com>
Link: https://github.com/openwrt/openwrt/pull/16185
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The company Zyxel rebranded some years ago.
Currently the casing is according to the old branding even
for newer devices which already use the new branding.
This commit aligns the casing of Zyxel everywhere.
Signed-off-by: Goetz Goerisch <ggoerisch@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15652
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This patch fixes model name in dts as below:
Radxa ROCK3 model A -> Radxa ROCK 3A
Radxa ROCK 5 model A -> Radxa ROCK 5A
Radxa ROCK 5 model B -> Radxa ROCK 5B
Signed-off-by: FUKAUMI Naoki <naoki@radxa.com>
Link: https://github.com/openwrt/openwrt/pull/16232
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add support for the Radxa ROCK 5B board.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Link: https://github.com/openwrt/openwrt/pull/16149
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add support for the Radxa ROCK 5A board.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Link: https://github.com/openwrt/openwrt/pull/16149
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
There is no need to build BL31 as anyway only the bl2 image is
relevant for use with mtk_uartboot. Build only bl2 in this case.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Specification:
- MT7629 CPU
- MT7531 switch
- MT7761N and MT7762N wifi
- 256 MB RAM
- 128 MB NAND flash with dual-boot partitions
- 2 buttons: WPS and reset
- 1 WAN port (1G)
- 4 LAN ports (1G)
- 1 USB port
Limitations (same as other MT7629/MT7761N/MT7762N devices):
- Wifi is not working
- Second core is not working (kernel error message "CPU1: failed to come online")
Disassembly:
- There are two screws under the front rubber feet and two under the label on the bottom (in the corners towards the back, you should be able to feel them).
Serial Interface:
- UART pin header is already soldered on the board. Pinning from front to back:
1 - VCC
2 - TX
3 - RX
4 - n/a
5 - GND
GPIO:
- 1 white LED, connected to GPIO 52
- 1 reset button, connected to GPIO 60
- 1 WPS button, connected to GPIO 58
MAC Adresses:
- The MAC address printed on the device label is used for LAN and WAN
- The MAC address is stored in the devinfo partition in ASCII format (hw_mac_addr=aa:bb:cc:dd:ee)
- 2.4 GHz wifi uses MAC of the device label + 1
- 5 GHz wifi uses MAC of the device label + 2
Flashing:
- OpenWrt is only runnig in the first partition of dual boot
- To ensure to be able to go back to the factory image, flash the last OEM firmware via OEM web interface. This will ensure that the OEM firmware is present on both partitions
- Because of dual boot partitions, flashing via OEM interface is not supported
- Start a TFTP server and provide the initramfs image. Default settings:
- Router IP: 192.168.1.1
- TFTP server IP: 192.168.1.100
- TFTP file name: 7531.bin
- Open the device, connect UART and select " 1. System Load Linux to SDRAM via TFTP." during startup
- Adapt the settings to your environment, if required
- After initramfs is booted, flash the sysupgrade image
Return to OEM firmware:
- Run the following commands in OpenWrt to switch to the second partition
fw_setenv boot_part 2
fw_setenv bootimage 2
- Reboot the device. OEM firmware will start up again
Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16067
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add support this boards to envtools config
This commit integrates the latest changes from new U-Boot, which includes important updates to the DTSI files for the Orange Pi R1 Plus and Orange Pi R1 Plus LTS boards.
Signed-off-by: Vyacheslav Ivanov <islavaivanov76@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16090
Signed-off-by: Robert Marko <robimarko@gmail.com>
A bug has plagued bl2 which caused failure to boot and bricked Linksys
E8450 and Belkin RT3200 devices in case of correctable bitflips being
detected during a read operation. A simple logic error resulted in read
to be considered errornous instead of just continueing in case of
correctable bitflips.
Address this by importing a patch fixing that logic error.
The issue, which has been dubbed as the "OpenWrt Kiss of Death", and is
now a thing of the past.
Users should preemptively update bl2 to prevent their devices being at
risk.
Link: https://github.com/mtk-openwrt/arm-trusted-firmware/pull/11
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Backporting support for the NanoPi R6S from upstream
uboot.
Signed-off-by: Ben Whitten <ben.whitten@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15607
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Upstream uboot have merged in kernel dts files, we need
the update for the rk3588 boards.
Signed-off-by: Ben Whitten <ben.whitten@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15607
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Adding support for the rk3588 platform
Signed-off-by: Ben Whitten <ben.whitten@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15607
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Cambium Networks XE3-4 is a tri-radio Wi-Fi 6/6E 4×4/2×2 AP.
Hardware:
Model: Cambium Networks XE3-4
CPU: IPQ6010/AP-CP01-C3, SoC Version: 1.0 @ 800 MHz
Memory: 1 GiB
Flash: 512 MiB Macronix MX30UF2G18AC + W25Q128FW
Ethernet: 1x 1 GbE (QCA8072)
1x 2.5 GbE (QCA8081)
Buttons: 1x Reset
Serial: TX, RX, GND
Baudrate: 115200
Radios: Qualcomm Atheros IPQ6018 802.11ax - 2x2 - 2GHz
Qualcomm Atheros IPQ6018 802.11ax - 2x2 - 5GHz
Qualcomm Atheros QCN9074 802.11ax - 4x4 - 5GHz or 6GHz
BLE 4.1
Power: 32.0W 802.3bt5 PoE++
25.5W 802.3at with USB, BT disabled
Size: 215mm x 215mm
Ports: 1x USB 2.0
Antenna: 6 GHz: 6.29 dBi, Omni 30 dBm
5 GHz: 6.12 dBi, Omni 31 dBm
2.4 GHz: 4.85 dBi, Omni 29 dBm
LEDs: Multi-color status LEDs
Mounting: Wall, ceiling or T-bar
Installation: Serial connection
1. Open the AP to get access to the board. Connect RX, TX and GND.
2. Power on the AP, and short the CS pin of the SPI flash with
one of the APs GND pins.
3. Transfer the initramfs image with TFTP
(Default server IP is 192.168.0.120)
# tftpboot factory.ubi
4. Flash the rootfs partition
# flash rootfs
5. Reboot the AP
# reset
Signed-off-by: Kristian Skramstad <kristian+github@83.no>
Link: https://github.com/openwrt/openwrt/pull/15633
Signed-off-by: Robert Marko <robimarko@gmail.com>
Mark the package as nonshared to build it in the target specific build
step 1 of the build bots instead of the architecture generic build step
2. In the build step 2 it may be left out if we build it using a
different target.
Fixes: 1eb21b87bd ("kobs-ng: add new package")
Link: https://github.com/openwrt/openwrt/pull/16031
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Mark the package as nonshared to build it in the target specific build
step 1 of the build bots instead of the architecture generic build step
2. In the build step 2 it may be left out if we build it using a
different target.
Fixes: 07043a853a ("imx23: rename imx23 to mxs for upcoming imx23/28 support")
Link: https://github.com/openwrt/openwrt/pull/16031
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Radxa ROCK Pi E v3.0 is a compact networking SBC[1] using the Rockchip
RK3328 SoC.
Hardware
--------
- Rockchip RK3328 SoC
- Quad A53 CPU
- 512MB/1GB/2GB DDR4 RAM
- 4/8/16/32GB eMMC
- Micro SD Card slot
- WiFi 4 and BT 4, or WiFi 5 and BT 5 (not supported yet)
- 1x 1000M Ethernet with PoE support (additional PoE HAT required)
- 1x 100M Ethernet
- 1x USB 3.0 Type-A port (Host)
- 1x 4-ring 3.5mm headphone jack
- 40 Pin GPIO header
[1] https://radxa.com/products/rockpi/pie
Installation
------------
Uncompress the OpenWrt sysupgrade and write it to a micro SD card or
internal eMMC using dd.
Signed-off-by: FUKAUMI Naoki <naoki@radxa.com>
Link: https://github.com/openwrt/openwrt/pull/15984
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add support for NEC Aterm series devices based on Atheros AR9344.
The following devices have almost the same hardware, so the same U-Boot
binary can be used for them.
- NEC Aterm WR8750N
- NEC Aterm WR9500N
- NEC Aterm WG600HP
By the way, on NetBSD-based NEC Aterm devices, only 0x20000 (128KiB) is
available for a bootloader on the flash chip and that limitation is too
small for mainline U-Boot with the default options. So many
features/commands not required for booting OpenWrt and recoverying are
disabled on that devices, like the followings.
- networking support
- FIT support
- all decompression methods support
etc...
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15432
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add U-Boot package for the devices that based on Atheros/Qualcomm
Atheros SoCs.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15432
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Same as TP-Link TL-XDR608x, this router comes with locked vendor
loader. Add U-Boot build for replacement loader for this device.
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
Link: https://github.com/openwrt/openwrt/pull/15930
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Radxa ROCK Pi S is a small in size, full in features SBC[1] using the
Rockchip RK3308B SoC.
Hardware
--------
- Rockchip RK3308B SoC
- Quad A35 CPU
- 256/512MB DDR3 RAM
- Optional 4/8GB eMMC
- Micro SD Card slot
- Optional WiFi 4 and BT 4 (not supported yet)
- 1x 100M Ethernet with PoE support (additional PoE HAT required)
- 1x USB 2.0 Type-A port (Host)
- 1x USB 2.0 Type-C port (OTG)
- 2x 26 Pin GPIO header
[1] https://radxa.com/products/rockpi/pis
Installation
------------
Uncompress the OpenWrt sysupgrade and write it to a micro SD card or
internal eMMC using dd.
Signed-off-by: FUKAUMI Naoki <naoki@radxa.com>
Link: https://github.com/openwrt/openwrt/pull/15933
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Huawei AP6010DN is a dual-band, dual-radio 802.11a/b/g/n 2x2 MIMO
enterprise access point with one Gigabit Ethernet port and PoE
support.
Hardware highlights:
- CPU: AR9344 SoC at 480MHz
- RAM: 128MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi 2.4GHz: AR9344-internal radio
- Wi-Fi 5GHz: AR9580 PCIe WLAN SoC
- Ethernet: 10/100/1000 Mbps Ethernet through Atheros AR8035 PHY
- PoE: yes
- Standalone 12V/2A power input
- Serial console externally available through RJ45 port
- External watchdog: CAT706SVI (1.6s timeout)
Serial console:
9600n8 (9600 baud, no stop bits, no parity, 8 data bits)
MAC addresses:
Each device has 32 consecutive MAC addresses allocated by
the vendor, which don't overlap between devices.
This was confirmed with multiple devices with consecutive
serial numbers.
The MAC address range starts with the address on the label.
To be able to distinguish between the interfaces,
the following MAC address scheme is used:
- eth0 = label MAC
- radio0 (Wi-Fi 2.4GHz) = label MAC + 1
- radio1 (Wi-Fi 5GHz) = label MAC + 2
Installation:
0. Connect some sort of RJ45-to-USB adapter to "Console" port of the AP
1. Power up the AP
2. At prompt "Press f or F to stop Auto-Boot in 3 seconds",
do what they say.
Log in with default admin password "admin@huawei.com".
3. Boot the OpenWrt initramfs from TFTP using the hidden script "run ramboot".
Replace IP address as needed:
> setenv serverip 192.168.1.10
> setenv ipaddr 192.168.1.1
> setenv rambootfile openwrt-ath79-generic-huawei_ap6010dn-initramfs-kernel.bin
> saveenv
> run ramboot
4. Optional but recommended as the factory firmware cannot be downloaded publicly:
Back up contents of "firmware" partition using the web interface or ssh:
$ ssh root@192.168.1.1 cat /dev/mtd11 > huawei_ap6010dn_fw_backup.bin
5. Run sysupgrade using sysupgrade image. OpenWrt
shall boot from flash afterwards.
Return to factory firmware (using firmware upgrade package downloaded from non-public Huawei website):
1. Start a TFTP server in the directory where
the firmware upgrade package is located
2. Boot to u-boot as described above
3. Install firmware upgrade package and format the config partitions:
> update system FatAP6X10XN_SOMEVERSION.bin
> format_fs
Return to factory firmware (from previously created backup):
1. Copy over the firmware partition backup to /tmp,
for example using scp
2. Use sysupgrade with force to restore the backup:
sysupgrade -F huawei_ap6010dn_fw_backup.bin
3. Boot AP to U-Boot as described above
Quirks and known issues:
- The stock firmware has a semi dual boot concept where the primary
kernel uses a squashfs as root partition and the secondary kernel uses
an initramfs. This dual boot concept is circumvented on purpose to gain
more flash space and since the stock firmware's flash layout isn't
compatible with mtdsplit.
- The external watchdog's timeout of 1.6s is very hard to satisfy
during bootup. This is why the GPIO15 pin connected to the watchdog input
is configured directly in the LZMA loader to output the AHB_CLK/2 signal
which keeps the watchdog happy until the wdt-gpio kernel driver takes
over. Because it would also take too long to read the whole kernel image
from flash, the uImage header only includes the loader which then reads
the kernel image from flash after GPIO15 is configured.
Signed-off-by: Marco von Rosenberg <marcovr@selfnet.de>
Link: https://github.com/openwrt/openwrt/pull/15941
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Hardware specification:
SoC: MediaTek MT7981B 2x A53
Flash: 128 MB SPI-NAND
RAM: 256MB
Ethernet: 4x 10/100/1000 Mbps
Switch: MediaTek MT7531AE
WiFi: MediaTek MT7976C
Button: Reset, Mesh
Power: DC 12V 1A
Gain telnet access:
1. Login into web interface, and download the configuration.
2. Decode and uncompress the configuration:
* Enter fakeroot if you are not login as root.
base64 -d e-xxxxxxxxxxxx-cfg.tar.gz | tar -zx
3. Edit 'etc/passwd', remove root password: 'root::1:0:99999:7:::'.
4. Edit 'etc/rc.local', insert telnetd command before 'exit 0':
( sleep 3s; /usr/sbin/telnetd; ) &
5. Repack the configuration:
tar -zc etc/ | base64 > e-xxxxxxxxxxxx-cfg.tar.gz
6. Upload new configuration via web interface, now you can connect to
ASR3000 via telnet.
Flash instructions:
1. Connect to ASR3000, backup everything, especially 'Factory' part.
2. Write new BL2:
mtd write openwrt-mediatek-filogic-abt_asr3000-preloader.bin BL2
3. Write new FIP:
mtd write openwrt-mediatek-filogic-abt_asr3000-bl31-uboot.fip FIP
4. Set static IP on your PC:
IP 192.168.1.254/24, GW 192.168.1.1
5. Serve OpenWrt initramfs image using TFTP server.
6. Cut off the power and re-engage, wait for TFTP recovery to complete.
7. After OpenWrt has booted, perform sysupgrade.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Link: https://github.com/openwrt/openwrt/pull/15887
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Use export_fitblk_bootdev() in /lib/upgrade/fit.sh instead of now
deprecated fitblk_get_bootdev() function. Include /lib/upgrade/fit.sh
instead of /lib/upgrade/common.sh to allow removing the function there.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
There is no point in hard-coding the UBI volume numbers as we are
dynamically looking up the volume by volume name in all cases by now.
Remove this relict as it causes problems without being useful for
anything.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
1. Rename function _do_env_set() to env_do_env_set().
2. Replace kwbimage hack with UBOOT_CUSTOMIZE_CONFIG:
"--disable TOOLS_KWBIMAGE" and "--disable TOOLS_LIBCRYPTO".
3. Disable CONFIG_CMD_BOOTEFI_BOOTMGR for all supported devices
because the newly added UEFI bootmenu entries doesn't work.
4. Enable CONFIG_VERSION_VARIABLE for the OpenWrt One.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Co-authored-by: Daniel Golle <daniel@makrotopia.org>
This commit adds support for Asus RT-AX89X BX revision.
WARNING: Only the BX revision boards (So B1, B2 etc) are supported because
AX revision boards use IPQ8074 v1 SoC which is unsupported.
Specifications:
---------------
* CPU: Qualcomm IPQ8074A Quad core Cortex-A53 @ 2.2GHz
* RAM: 1024MB
* Storage: 256MB SLC NAND (Macronix MX30UF2G18AC)
* Ethernet:
* 5x 1G RJ45 ports via QCA8337 switch
* 3x 1G RJ45 ports via internal switch (QCA8075 PHY)
* 1x 10G RJ45 via internal switch (AQR113C PHY)
* 1x 10G SFP+ slot via internal switch
* WLAN:
* 2.4GHz 4x4
* 5GHz 8x8
* 8 external antennas
* USB: 2x USB 3.0 Type-A
* Buttons:
* Power switch
* WPS
* Reset
* Wireless ON/OFF
* LED ON/OFF
LED-s:
* Power
* Wi-Fi
* WAN
* 10G
* SFP+
Power:
* 19.5V via DC jack
Installation instructions:
--------------------------
1. Flash temporary OpenWrt initramfs:
* Flash openwrt-qualcommax-ipq807x-asus_rt-ax89x-initramfs-factory.trx
via the stock firmware.
Administration -> Firmware Upgrade -> Manual Firmware update (Upload)
After flashing the device will reboot with OpenWrt initramfs and it can
be accesed via any of the LAN ports via SSH with the usual OpenWrt
default credentials.
2. Sysupgrade from OpenWrt initramfs:
* Copy openwrt-qualcommax-ipq807x-asus_rt-ax89x-squashfs-sysupgrade.bin to
/tmp/openwrt-qualcommax-ipq807x-asus_rt-ax89x-squashfs-sysupgrade.bin of
the running initramfs image.
* Simply sysupgrade -n /tmp/openwrt-qualcommax-ipq807x-asus_rt-ax89x-squashfs-sysupgrade.bin
After flashing the device will reboot with OpenWrt initramfs and it can
be accesed via any of the LAN ports via SSH with the usual OpenWrt
default credentials.
Link: https://github.com/openwrt/openwrt/pull/15840
Signed-off-by: Robert Marko <robimarko@gmail.com>
This commit adds support for TP-LINK RE6000XD.
The device is quite similar to the Mercusys MR90X V1,
except only 3 LAN ports and more LEDs.
So thanks to csharper2005 for doing all the groundwork.
Device specification
--------------------
SoC Type: MediaTek MT7986BLA, Cortex-A53, 64-bit
RAM: MediaTek MT7986BLA (512MB)
Flash: SPI NAND GigaDevice (128 MB)
Ethernet: MediaTek MT7531AE + 2.5GbE MaxLinear GPY211C0VC (SLNW8)
Ethernet: 1x2.5Gbe (LAN3 2.5Gbps), 2xGbE (LAN 1Gbps, LAN1,
LAN2)
WLAN 2g: MediaTek MT7975N, b/g/n/ax, MIMO 4x4
WLAN 5g: MediaTek MT7975P(N), a/n/ac/ax, MIMO 4x4
LEDs: 8 LEDs, 1 status blue, 2x WIFI blue, 2x signal
blue/red, 3 LAN blue gpio-controlled
Button: 2 (Reset, WPS)
USB ports: No
Power: 12 VDC, 2 A
Connector: Barrel
Bootloader: Main U-Boot - U-Boot 2022.01-rc4. Additionally, ubi0
partition contain "seconduboot" (also U-Boot 2022.01-rc4)
Serial console (UART), unpopulated
---------------------
V
+-------+-------+-------+-------+
| +3.3V | GND | TX | RX |
+---+---+-------+-------+-------+
|
+--- Don't connect
Disassemble: rm the 2 screws at the bottom and the one at the backside.
un-clip the case starting at the edge above the LEDs.
Installation (UART)
-------------------
1. Place OpenWrt initramfs image on tftp server with IP 192.168.1.2
2. Attach UART, switch on the router and interrupt the boot process by
pressing 'Ctrl-C'
3. Load and run OpenWrt initramfs image:
tftpboot openwrt-mediatek-filogic-tplink_re6000xd-initramfs-kernel.bin bootm
4. Run 'sysupgrade -n' with the sysupgrade OpenWrt image
Notice: while I was successfull at activating ssh (as described
here:
https://www.lisenet.com/2023/gaining-ssh-access-to-tp-link-re200-wi-fi-range-extender/)
Unfortunately I haven't found the correct root password.
Looks like they are using a static password
(md5crypt, salt + 21 characters) that is not the web
interface admin password.
The TP-LINK RE900XD looks like the very same device,
according to the pictures and the firmware.
But I haven't checked if the OpenWrt firmware works as well
on that device.
The second ubi partition (ubi1) is empty and there is no known
dual-partition mechanism, neither in u-boot nor in the stock firmware.
Signed-off-by: Dirk Buchwalder <buchwalder@posteo.de>
Re-enable FIT signature verification since we switched to use hyphen
for node name separators in commit 2b133ab19c ("scripts: use sep-char for hash nodes").
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
use u-boot-rockchip.bin to copy SPL/TPL/U-Boot to the image.
since binman was used in mainline u-boot for rockchip, we can use
u-boot-rockchip.bin instead of idbloader.img and u-boot.itb.
Reviewed-by: Tianling Shen <cnsztl@immortalwrt.org>
Signed-off-by: FUKAUMI Naoki <naoki@radxa.com>
Link: https://github.com/openwrt/openwrt/pull/15815
Signed-off-by: Robert Marko <robimarko@gmail.com>
MikroTik RB5009 uses RouterBoot as its bootloader like all MikroTik devices
running RouterOS, meaning that its not FIT compatible and can only boot
ELF images.
Now this is not so much of an issue on ARM or MIPS since kernel supports
appending DTB-s to it (Or we patch the kernel to embed it), but on ARM64
there is intentionally no such support.
RouterBoot will pass a DTB, but its the broken MikroTik one which is a
modified reference DTB and incorrect in more places than its valid so we
cannot use it to boot our kernel.
Thus, the solution is to use an intermediary loader and luckily for us
Armada 7040 is well supported in U-Boot which makes it a great option since
it supports anything that we will ever need to boot.
Upstream U-Boot currently requires the Armada boards to be converted to
OF_UPSTREAM before adding anything new and this requires updating all of
the drivers to accomodate the Linux DTS, while I plan to do this eventually
we will need to keep this board downstream for now.
Most stuff is supported in U-Boot, including networking since the switch
is preconfigured by RouterBoot.
A custom environment is used to try and boot from the following devices:
1. NAND (UBI)
2. USB
3. Networking
If NAND boot fails then U-Boot will attempt to boot OpenWrt initramfs from
USB or via networking.
There is a manual recovery mechanism implemented where if the reset button
is held when U-Boot is booting it will try to boot OpenWrt initramfs from:
1. USB
2. Networking
When U-Boot is in recovery mode it will light all of the LED-s except the
switch ones.
Link: https://github.com/openwrt/openwrt/pull/15765
Signed-off-by: Robert Marko <robimarko@gmail.com>
Add two patches to fix compile errors being repeatedly seen on OpenWrt CI.
The first is an upstream backport to fix this i386-related error:
x86_64-openwrt-linux-musl-gcc -mcmodel=large -I./purgatory/include
-I./purgatory/arch/x86_64/include -I./util_lib/include -I./include -Iinclude
-I/builder/shared-workdir/build/sdk/staging_dir/toolchain-x86_64_gcc-13.3.0_musl/lib/gcc/x86_64-openwrt-linux-musl/13.3.0/include
-c -MD -o purgatory/arch/i386/entry32-16.o purgatory/arch/i386/entry32-16.S
purgatory/arch/i386/entry32-16.S: Assembler messages:
purgatory/arch/i386/entry32-16.S:23: Error: 64bit mode not supported on `i386'.
The second addresses an error using basename() on musl libc:
kexec/arch/i386/x86-linux-setup.c: In function 'add_edd_entry':
kexec/arch/i386/x86-linux-setup.c:332:20: warning: implicit declaration of function 'basename' [-Wimplicit-function-declaration]
332 | if (sscanf(basename(sysfs_name), "int13_dev%hhx", &devnum) != 1) {
| ^~~~~~~~
kexec/arch/i386/x86-linux-setup.c:332:20: warning: passing argument 1 of 'sscanf' makes pointer from integer without a cast [-Wint-conversion]
332 | if (sscanf(basename(sysfs_name), "int13_dev%hhx", &devnum) != 1) {
| ^~~~~~~~~~~~~~~~~~~~
| |
| int
...
Fixes: #14621
Signed-off-by: Tony Ambardar <itugrok@yahoo.com>
The gpio is actually low active, fix it.
Fixes: 40e7fab9e4 ("mediatek: add Nokia EA0326GMP support")
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
Link: https://github.com/openwrt/openwrt/pull/15651
Signed-off-by: Robert Marko <robimarko@gmail.com>