Tom Rini 2022-01-26 20:41:38 -05:00
commit 9a1dd6dcfe
9 changed files with 967 additions and 75 deletions

View file

@ -380,6 +380,9 @@ int stdio_add_devices(void)
serial_stdio_init();
#ifdef CONFIG_USB_TTY
drv_usbtty_init();
#endif
#ifdef CONFIG_USB_FUNCTION_ACM
drv_usbacm_init ();
#endif
if (IS_ENABLED(CONFIG_NETCONSOLE))
drv_nc_init();

View file

@ -182,6 +182,15 @@ config USB_FUNCTION_THOR
Enable Tizen's THOR download protocol support in U-Boot. It
allows downloading images into memory and flash them to target device.
config USB_FUNCTION_ACM
bool "Enable CDC ACM gadget"
select SYS_STDIO_DEREGISTER
select CIRCBUF
help
ACM serial link. This function can be used to create a stdio device to
interoperate with MS-Windows hosts or with the Linux-USB "cdc-acm"
driver.
endif # USB_GADGET_DOWNLOAD
config USB_ETHER

View file

@ -30,6 +30,7 @@ obj-$(CONFIG_USB_FUNCTION_MASS_STORAGE) += f_mass_storage.o
obj-$(CONFIG_USB_FUNCTION_FASTBOOT) += f_fastboot.o
obj-$(CONFIG_USB_FUNCTION_SDP) += f_sdp.o
obj-$(CONFIG_USB_FUNCTION_ROCKUSB) += f_rockusb.o
obj-$(CONFIG_USB_FUNCTION_ACM) += f_acm.o
endif
endif
ifdef CONFIG_USB_ETHER

672
drivers/usb/gadget/f_acm.c Normal file
View file

@ -0,0 +1,672 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* USB CDC serial (ACM) function driver
*
* Copyright (C) 2003 Al Borchers (alborchers@steinerpoint.com)
* Copyright (C) 2008 by David Brownell
* Copyright (C) 2008 by Nokia Corporation
* Copyright (C) 2009 by Samsung Electronics
* Copyright (c) 2021, Linaro Ltd <loic.poulain@linaro.org>
*/
#include <circbuf.h>
#include <common.h>
#include <console.h>
#include <errno.h>
#include <g_dnl.h>
#include <malloc.h>
#include <memalign.h>
#include <stdio_dev.h>
#include <version.h>
#include <watchdog.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/composite.h>
#include <linux/usb/cdc.h>
#define REQ_SIZE_MAX 512
struct f_acm {
int ctrl_id;
int data_id;
struct usb_ep *ep_in;
struct usb_ep *ep_out;
struct usb_ep *ep_notify;
struct usb_request *req_in;
struct usb_request *req_out;
bool connected;
bool tx_on;
circbuf_t rx_buf;
circbuf_t tx_buf;
struct usb_function usb_function;
struct usb_cdc_line_coding line_coding;
u16 handshake_bits;
#define ACM_CTRL_RTS BIT(1) /* unused with full duplex */
#define ACM_CTRL_DTR BIT(0) /* host is ready for data r/w */
int controller_index;
};
static struct f_acm *default_acm_function;
static inline struct f_acm *func_to_acm(struct usb_function *f)
{
return container_of(f, struct f_acm, usb_function);
}
static inline struct f_acm *stdio_to_acm(struct stdio_dev *s)
{
/* stdio dev is cloned on registration, do not use container_of */
return s->priv;
}
static struct usb_interface_assoc_descriptor
acm_iad_descriptor = {
.bLength = sizeof(acm_iad_descriptor),
.bDescriptorType = USB_DT_INTERFACE_ASSOCIATION,
.bFirstInterface = 0,
.bInterfaceCount = 2, // control + data
.bFunctionClass = USB_CLASS_COMM,
.bFunctionSubClass = USB_CDC_SUBCLASS_ACM,
.bFunctionProtocol = USB_CDC_ACM_PROTO_AT_V25TER,
};
static struct usb_interface_descriptor acm_control_intf_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bNumEndpoints = 1,
.bInterfaceClass = USB_CLASS_COMM,
.bInterfaceSubClass = USB_CDC_SUBCLASS_ACM,
.bInterfaceProtocol = USB_CDC_ACM_PROTO_AT_V25TER,
};
static struct usb_interface_descriptor acm_data_intf_desc = {
.bLength = sizeof(acm_data_intf_desc),
.bDescriptorType = USB_DT_INTERFACE,
.bNumEndpoints = 2,
.bInterfaceClass = USB_CLASS_CDC_DATA,
};
static struct usb_cdc_header_desc acm_header_desc = {
.bLength = sizeof(acm_header_desc),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubType = USB_CDC_HEADER_TYPE,
.bcdCDC = __constant_cpu_to_le16(0x0110),
};
static struct usb_cdc_call_mgmt_descriptor acm_call_mgmt_desc = {
.bLength = sizeof(acm_call_mgmt_desc),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubType = USB_CDC_CALL_MANAGEMENT_TYPE,
.bmCapabilities = 0,
.bDataInterface = 0x01,
};
static struct usb_cdc_acm_descriptor acm_desc = {
.bLength = sizeof(acm_desc),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubType = USB_CDC_ACM_TYPE,
.bmCapabilities = USB_CDC_CAP_LINE,
};
static struct usb_cdc_union_desc acm_union_desc = {
.bLength = sizeof(acm_union_desc),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubType = USB_CDC_UNION_TYPE,
.bMasterInterface0 = 0x00,
.bSlaveInterface0 = 0x01,
};
static struct usb_endpoint_descriptor acm_fs_notify_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 3 | USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.wMaxPacketSize = __constant_cpu_to_le16(64),
.bInterval = 32,
};
static struct usb_endpoint_descriptor acm_fs_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
};
static struct usb_endpoint_descriptor acm_fs_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
};
static struct usb_descriptor_header *acm_fs_function[] = {
(struct usb_descriptor_header *)&acm_iad_descriptor,
(struct usb_descriptor_header *)&acm_control_intf_desc,
(struct usb_descriptor_header *)&acm_header_desc,
(struct usb_descriptor_header *)&acm_call_mgmt_desc,
(struct usb_descriptor_header *)&acm_desc,
(struct usb_descriptor_header *)&acm_union_desc,
(struct usb_descriptor_header *)&acm_fs_notify_desc,
(struct usb_descriptor_header *)&acm_data_intf_desc,
(struct usb_descriptor_header *)&acm_fs_in_desc,
(struct usb_descriptor_header *)&acm_fs_out_desc,
NULL,
};
static struct usb_endpoint_descriptor acm_hs_notify_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.wMaxPacketSize = __constant_cpu_to_le16(64),
.bInterval = 11,
};
static struct usb_endpoint_descriptor acm_hs_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = __constant_cpu_to_le16(512),
};
static struct usb_endpoint_descriptor acm_hs_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = __constant_cpu_to_le16(512),
};
static struct usb_descriptor_header *acm_hs_function[] = {
(struct usb_descriptor_header *)&acm_iad_descriptor,
(struct usb_descriptor_header *)&acm_control_intf_desc,
(struct usb_descriptor_header *)&acm_header_desc,
(struct usb_descriptor_header *)&acm_call_mgmt_desc,
(struct usb_descriptor_header *)&acm_desc,
(struct usb_descriptor_header *)&acm_union_desc,
(struct usb_descriptor_header *)&acm_hs_notify_desc,
(struct usb_descriptor_header *)&acm_data_intf_desc,
(struct usb_descriptor_header *)&acm_hs_in_desc,
(struct usb_descriptor_header *)&acm_hs_out_desc,
NULL,
};
static inline struct usb_endpoint_descriptor *
ep_desc(struct usb_gadget *g, struct usb_endpoint_descriptor *hs,
struct usb_endpoint_descriptor *fs)
{
if (gadget_is_dualspeed(g) && g->speed == USB_SPEED_HIGH)
return hs;
return fs;
}
static int acm_bind(struct usb_configuration *c, struct usb_function *f)
{
struct usb_gadget *gadget = c->cdev->gadget;
struct f_acm *f_acm = func_to_acm(f);
struct usb_ep *ep;
int id;
id = usb_interface_id(c, f);
if (id < 0)
return id;
acm_iad_descriptor.bFirstInterface = id;
acm_control_intf_desc.bInterfaceNumber = id;
acm_union_desc.bMasterInterface0 = id;
f_acm->ctrl_id = id;
id = usb_interface_id(c, f);
if (id < 0)
return id;
acm_data_intf_desc.bInterfaceNumber = id;
acm_union_desc.bSlaveInterface0 = id;
acm_call_mgmt_desc.bDataInterface = id;
f_acm->data_id = id;
/* allocate instance-specific endpoints */
ep = usb_ep_autoconfig(gadget, &acm_fs_in_desc);
if (!ep)
return -ENODEV;
f_acm->ep_in = ep;
ep = usb_ep_autoconfig(gadget, &acm_fs_out_desc);
if (!ep)
return -ENODEV;
f_acm->ep_out = ep;
ep = usb_ep_autoconfig(gadget, &acm_fs_notify_desc);
if (!ep)
return -ENODEV;
f_acm->ep_notify = ep;
if (gadget_is_dualspeed(gadget)) {
/* Assume endpoint addresses are the same for both speeds */
acm_hs_in_desc.bEndpointAddress = acm_fs_in_desc.bEndpointAddress;
acm_hs_out_desc.bEndpointAddress = acm_fs_out_desc.bEndpointAddress;
acm_hs_notify_desc.bEndpointAddress = acm_fs_notify_desc.bEndpointAddress;
}
return 0;
}
static void acm_unbind(struct usb_configuration *c, struct usb_function *f)
{
struct f_acm *f_acm = func_to_acm(f);
if (default_acm_function == f_acm)
default_acm_function = NULL;
buf_free(&f_acm->rx_buf);
buf_free(&f_acm->tx_buf);
free(f_acm);
}
static void acm_notify_complete(struct usb_ep *ep, struct usb_request *req)
{
/* nothing to do */
}
static void acm_tx_complete(struct usb_ep *ep, struct usb_request *req)
{
struct f_acm *f_acm = req->context;
f_acm->tx_on = true;
}
static void acm_rx_complete(struct usb_ep *ep, struct usb_request *req)
{
struct f_acm *f_acm = req->context;
buf_push(&f_acm->rx_buf, req->buf, req->actual);
/* Queue RX req again */
req->actual = 0;
usb_ep_queue(ep, req, 0);
}
static struct usb_request *acm_start_ep(struct usb_ep *ep, void *complete_cb,
void *context)
{
struct usb_request *req;
req = usb_ep_alloc_request(ep, 0);
if (!req)
return NULL;
req->length = REQ_SIZE_MAX;
req->buf = memalign(CONFIG_SYS_CACHELINE_SIZE, REQ_SIZE_MAX);
if (!req->buf) {
usb_ep_free_request(ep, req);
return NULL;
}
memset(req->buf, 0, req->length);
req->complete = complete_cb;
req->context = context;
return req;
}
static int acm_start_data(struct f_acm *f_acm, struct usb_gadget *gadget)
{
const struct usb_endpoint_descriptor *d;
int ret;
/* EP IN */
d = ep_desc(gadget, &acm_hs_in_desc, &acm_fs_in_desc);
ret = usb_ep_enable(f_acm->ep_in, d);
if (ret)
return ret;
f_acm->req_in = acm_start_ep(f_acm->ep_in, acm_tx_complete, f_acm);
/* EP OUT */
d = ep_desc(gadget, &acm_hs_out_desc, &acm_fs_out_desc);
ret = usb_ep_enable(f_acm->ep_out, d);
if (ret)
return ret;
f_acm->req_out = acm_start_ep(f_acm->ep_out, acm_rx_complete, f_acm);
/* Start OUT transfer (EP OUT) */
ret = usb_ep_queue(f_acm->ep_out, f_acm->req_out, 0);
if (ret)
return ret;
return 0;
}
static int acm_start_ctrl(struct f_acm *f_acm, struct usb_gadget *gadget)
{
const struct usb_endpoint_descriptor *d;
usb_ep_disable(f_acm->ep_notify);
d = ep_desc(gadget, &acm_hs_notify_desc, &acm_fs_notify_desc);
usb_ep_enable(f_acm->ep_notify, d);
acm_start_ep(f_acm->ep_notify, acm_notify_complete, f_acm);
return 0;
}
static int acm_set_alt(struct usb_function *f, unsigned int intf, unsigned int alt)
{
struct usb_gadget *gadget = f->config->cdev->gadget;
struct f_acm *f_acm = func_to_acm(f);
if (intf == f_acm->ctrl_id) {
return acm_start_ctrl(f_acm, gadget);
} else if (intf == f_acm->data_id) {
acm_start_data(f_acm, gadget);
f_acm->connected = true;
f_acm->tx_on = true;
return 0;
}
return -EINVAL;
}
static int acm_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl)
{
struct usb_gadget *gadget = f->config->cdev->gadget;
struct usb_request *req = f->config->cdev->req;
u16 w_index = le16_to_cpu(ctrl->wIndex);
u16 w_value = le16_to_cpu(ctrl->wValue);
u16 w_length = le16_to_cpu(ctrl->wLength);
struct f_acm *f_acm = func_to_acm(f);
int value = -1;
switch ((ctrl->bRequestType << 8) | ctrl->bRequest) {
case ((USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE) << 8)
| USB_CDC_REQ_SET_LINE_CODING:
/* SET_LINE_CODING */
if (w_length != sizeof(f_acm->line_coding) || w_index != f_acm->ctrl_id)
goto invalid;
value = w_length;
memcpy(&f_acm->line_coding, req->buf, value);
break;
case ((USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE) << 8)
| USB_CDC_REQ_GET_LINE_CODING:
/* GET_LINE_CODING */
if (w_length != sizeof(f_acm->line_coding) || w_index != f_acm->ctrl_id)
goto invalid;
value = w_length;
memcpy(req->buf, &f_acm->line_coding, value);
break;
case ((USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE) << 8)
| USB_CDC_REQ_SET_CONTROL_LINE_STATE:
/* SET_CONTROL_LINE_STATE */
if (w_index != f_acm->ctrl_id)
goto invalid;
value = 0;
f_acm->handshake_bits = w_value;
break;
default:
invalid:
printf("invalid control req%02x.%02x v%04x i%04x l%d\n",
ctrl->bRequestType, ctrl->bRequest, w_value, w_index,
w_length);
}
/* respond with data transfer or status phase? */
if (value >= 0) {
req->zero = 0;
req->length = value;
usb_ep_queue(gadget->ep0, req, GFP_ATOMIC);
}
return 0;
}
static void acm_disable(struct usb_function *f)
{
struct f_acm *f_acm = func_to_acm(f);
usb_ep_disable(f_acm->ep_out);
usb_ep_disable(f_acm->ep_in);
usb_ep_disable(f_acm->ep_notify);
if (f_acm->req_out) {
free(f_acm->req_out->buf);
usb_ep_free_request(f_acm->ep_out, f_acm->req_out);
f_acm->req_out = NULL;
}
if (f_acm->req_in) {
free(f_acm->req_in->buf);
usb_ep_free_request(f_acm->ep_in, f_acm->req_in);
f_acm->req_in = NULL;
}
}
/* static strings, in UTF-8 */
static struct usb_string acm_string_defs[] = {
[0].s = "CDC Abstract Control Model (ACM)",
[1].s = "CDC ACM Data",
[2].s = "CDC Serial",
{ } /* end of list */
};
static struct usb_gadget_strings acm_string_table = {
.language = 0x0409, /* en-us */
.strings = acm_string_defs,
};
static struct usb_gadget_strings *acm_strings[] = {
&acm_string_table,
NULL,
};
static void __acm_tx(struct f_acm *f_acm)
{
int len, ret;
do {
usb_gadget_handle_interrupts(f_acm->controller_index);
if (!(f_acm->handshake_bits & ACM_CTRL_DTR))
break;
if (!f_acm->tx_on)
continue;
len = buf_pop(&f_acm->tx_buf, f_acm->req_in->buf, REQ_SIZE_MAX);
if (!len)
break;
f_acm->req_in->length = len;
ret = usb_ep_queue(f_acm->ep_in, f_acm->req_in, 0);
if (ret)
break;
f_acm->tx_on = false;
/* Do not reset the watchdog, if TX is stuck there is probably
* a real issue.
*/
} while (1);
}
static bool acm_connected(struct stdio_dev *dev)
{
struct f_acm *f_acm = stdio_to_acm(dev);
/* give a chance to process udc irq */
usb_gadget_handle_interrupts(f_acm->controller_index);
return f_acm->connected;
}
static int acm_add(struct usb_configuration *c)
{
struct f_acm *f_acm;
int status;
f_acm = calloc(1, sizeof(*f_acm));
if (!f_acm)
return -ENOMEM;
f_acm->usb_function.name = "f_acm";
f_acm->usb_function.bind = acm_bind;
f_acm->usb_function.unbind = acm_unbind;
f_acm->usb_function.set_alt = acm_set_alt;
f_acm->usb_function.disable = acm_disable;
f_acm->usb_function.strings = acm_strings;
f_acm->usb_function.descriptors = acm_fs_function;
f_acm->usb_function.hs_descriptors = acm_hs_function;
f_acm->usb_function.setup = acm_setup;
f_acm->controller_index = 0;
status = usb_add_function(c, &f_acm->usb_function);
if (status) {
free(f_acm);
return status;
}
buf_init(&f_acm->rx_buf, 2048);
buf_init(&f_acm->tx_buf, 2048);
if (!default_acm_function)
default_acm_function = f_acm;
return status;
}
DECLARE_GADGET_BIND_CALLBACK(usb_serial_acm, acm_add);
/* STDIO */
static int acm_stdio_tstc(struct stdio_dev *dev)
{
struct f_acm *f_acm = stdio_to_acm(dev);
usb_gadget_handle_interrupts(f_acm->controller_index);
return (f_acm->rx_buf.size > 0);
}
static int acm_stdio_getc(struct stdio_dev *dev)
{
struct f_acm *f_acm = stdio_to_acm(dev);
char c;
/* Wait for a character to arrive. */
while (!acm_stdio_tstc(dev))
WATCHDOG_RESET();
buf_pop(&f_acm->rx_buf, &c, 1);
return c;
}
static void acm_stdio_putc(struct stdio_dev *dev, const char c)
{
struct f_acm *f_acm = stdio_to_acm(dev);
if (c == '\n')
buf_push(&f_acm->tx_buf, "\r", 1);
buf_push(&f_acm->tx_buf, &c, 1);
if (!f_acm->connected)
return;
__acm_tx(f_acm);
}
static void acm_stdio_puts(struct stdio_dev *dev, const char *str)
{
struct f_acm *f_acm = stdio_to_acm(dev);
while (*str) {
if (*str == '\n')
buf_push(&f_acm->tx_buf, "\r", 1);
buf_push(&f_acm->tx_buf, str++, 1);
}
if (!f_acm->connected)
return;
__acm_tx(f_acm);
}
static int acm_stdio_start(struct stdio_dev *dev)
{
int ret;
if (dev->priv) { /* function already exist */
return 0;
}
ret = g_dnl_register("usb_serial_acm");
if (ret)
return ret;
if (default_acm_function)
dev->priv = default_acm_function;
else
return -ENODEV;
while (!acm_connected(dev)) {
if (ctrlc())
return -ECANCELED;
WATCHDOG_RESET();
}
return 0;
}
static int acm_stdio_stop(struct stdio_dev *dev)
{
g_dnl_unregister();
g_dnl_clear_detach();
return 0;
}
int drv_usbacm_init(void)
{
struct stdio_dev stdio;
strcpy(stdio.name, "usbacm");
stdio.flags = DEV_FLAGS_INPUT | DEV_FLAGS_OUTPUT;
stdio.tstc = acm_stdio_tstc;
stdio.getc = acm_stdio_getc;
stdio.putc = acm_stdio_putc;
stdio.puts = acm_stdio_puts;
stdio.start = acm_stdio_start;
stdio.stop = acm_stdio_stop;
stdio.priv = NULL;
stdio.ext = 0;
return stdio_register(&stdio);
}

View file

@ -180,12 +180,13 @@ config USB_EHCI_MX7
Enables support for the on-chip EHCI controller on i.MX7 SoCs.
config USB_EHCI_MXS
bool "Support for i.MX23 EHCI USB controller"
depends on ARCH_MX23
bool "Support for i.MX23/i.MX28 EHCI USB controller"
depends on ARCH_MX23 || ARCH_MX28
default y
select USB_EHCI_IS_TDI
help
Enables support for the on-chip EHCI controller on i.MX23 SoCs.
Enables support for the on-chip EHCI controller on i.MX23 and
i.MX28 SoCs.
config USB_EHCI_OMAP
bool "Support for OMAP3+ on-chip EHCI USB controller"

View file

@ -11,6 +11,8 @@
#include <asm/arch/imx-regs.h>
#include <errno.h>
#include <linux/delay.h>
#include <dm.h>
#include <power/regulator.h>
#include "ehci.h"
@ -29,6 +31,88 @@ struct ehci_mxs_port {
uint32_t gate_bits;
};
static int ehci_mxs_toggle_clock(const struct ehci_mxs_port *port, int enable)
{
struct mxs_register_32 *digctl_ctrl =
(struct mxs_register_32 *)HW_DIGCTL_CTRL;
int pll_offset, dig_offset;
if (enable) {
pll_offset = offsetof(struct mxs_register_32, reg_set);
dig_offset = offsetof(struct mxs_register_32, reg_clr);
writel(port->gate_bits, (u32)&digctl_ctrl->reg + dig_offset);
writel(port->pll_en_bits, (u32)port->pll + pll_offset);
} else {
pll_offset = offsetof(struct mxs_register_32, reg_clr);
dig_offset = offsetof(struct mxs_register_32, reg_set);
writel(port->pll_dis_bits, (u32)port->pll + pll_offset);
writel(port->gate_bits, (u32)&digctl_ctrl->reg + dig_offset);
}
return 0;
}
static int __ehci_hcd_init(struct ehci_mxs_port *port, enum usb_init_type init,
struct ehci_hccr **hccr, struct ehci_hcor **hcor)
{
u32 usb_base, cap_base;
int ret;
/* Reset the PHY block */
writel(USBPHY_CTRL_SFTRST, &port->phy_regs->hw_usbphy_ctrl_set);
udelay(10);
writel(USBPHY_CTRL_SFTRST | USBPHY_CTRL_CLKGATE,
&port->phy_regs->hw_usbphy_ctrl_clr);
/* Enable USB clock */
ret = ehci_mxs_toggle_clock(port, 1);
if (ret)
return ret;
/* Start USB PHY */
writel(0, &port->phy_regs->hw_usbphy_pwd);
/* Enable UTMI+ Level 2 and Level 3 compatibility */
writel(USBPHY_CTRL_ENUTMILEVEL3 | USBPHY_CTRL_ENUTMILEVEL2 | 1,
&port->phy_regs->hw_usbphy_ctrl_set);
usb_base = port->usb_regs + 0x100;
*hccr = (struct ehci_hccr *)usb_base;
cap_base = ehci_readl(&(*hccr)->cr_capbase);
*hcor = (struct ehci_hcor *)(usb_base + HC_LENGTH(cap_base));
return 0;
}
static int __ehci_hcd_stop(struct ehci_mxs_port *port)
{
u32 usb_base, cap_base, tmp;
struct ehci_hccr *hccr;
struct ehci_hcor *hcor;
/* Stop the USB port */
usb_base = port->usb_regs + 0x100;
hccr = (struct ehci_hccr *)usb_base;
cap_base = ehci_readl(&hccr->cr_capbase);
hcor = (struct ehci_hcor *)(usb_base + HC_LENGTH(cap_base));
tmp = ehci_readl(&hcor->or_usbcmd);
tmp &= ~CMD_RUN;
ehci_writel(&hcor->or_usbcmd, tmp);
/* Disable the PHY */
tmp = USBPHY_PWD_RXPWDRX | USBPHY_PWD_RXPWDDIFF |
USBPHY_PWD_RXPWD1PT1 | USBPHY_PWD_RXPWDENV |
USBPHY_PWD_TXPWDV2I | USBPHY_PWD_TXPWDIBIAS |
USBPHY_PWD_TXPWDFS;
writel(tmp, &port->phy_regs->hw_usbphy_pwd);
/* Disable USB clock */
return ehci_mxs_toggle_clock(port, 0);
}
#if !CONFIG_IS_ENABLED(DM_USB)
static const struct ehci_mxs_port mxs_port[] = {
#ifdef CONFIG_EHCI_MXS_PORT0
{
@ -56,27 +140,6 @@ static const struct ehci_mxs_port mxs_port[] = {
#endif
};
static int ehci_mxs_toggle_clock(const struct ehci_mxs_port *port, int enable)
{
struct mxs_register_32 *digctl_ctrl =
(struct mxs_register_32 *)HW_DIGCTL_CTRL;
int pll_offset, dig_offset;
if (enable) {
pll_offset = offsetof(struct mxs_register_32, reg_set);
dig_offset = offsetof(struct mxs_register_32, reg_clr);
writel(port->gate_bits, (u32)&digctl_ctrl->reg + dig_offset);
writel(port->pll_en_bits, (u32)port->pll + pll_offset);
} else {
pll_offset = offsetof(struct mxs_register_32, reg_clr);
dig_offset = offsetof(struct mxs_register_32, reg_set);
writel(port->pll_dis_bits, (u32)port->pll + pll_offset);
writel(port->gate_bits, (u32)&digctl_ctrl->reg + dig_offset);
}
return 0;
}
int __weak board_ehci_hcd_init(int port)
{
return 0;
@ -92,7 +155,6 @@ int ehci_hcd_init(int index, enum usb_init_type init,
{
int ret;
uint32_t usb_base, cap_base;
const struct ehci_mxs_port *port;
if ((index < 0) || (index >= ARRAY_SIZE(mxs_port))) {
@ -105,40 +167,12 @@ int ehci_hcd_init(int index, enum usb_init_type init,
return ret;
port = &mxs_port[index];
/* Reset the PHY block */
writel(USBPHY_CTRL_SFTRST, &port->phy_regs->hw_usbphy_ctrl_set);
udelay(10);
writel(USBPHY_CTRL_SFTRST | USBPHY_CTRL_CLKGATE,
&port->phy_regs->hw_usbphy_ctrl_clr);
/* Enable USB clock */
ret = ehci_mxs_toggle_clock(port, 1);
if (ret)
return ret;
/* Start USB PHY */
writel(0, &port->phy_regs->hw_usbphy_pwd);
/* Enable UTMI+ Level 2 and Level 3 compatibility */
writel(USBPHY_CTRL_ENUTMILEVEL3 | USBPHY_CTRL_ENUTMILEVEL2 | 1,
&port->phy_regs->hw_usbphy_ctrl_set);
usb_base = port->usb_regs + 0x100;
*hccr = (struct ehci_hccr *)usb_base;
cap_base = ehci_readl(&(*hccr)->cr_capbase);
*hcor = (struct ehci_hcor *)(usb_base + HC_LENGTH(cap_base));
return 0;
return __ehci_hcd_init(port, init, hccr, hcor);
}
int ehci_hcd_stop(int index)
{
int ret;
uint32_t usb_base, cap_base, tmp;
struct ehci_hccr *hccr;
struct ehci_hcor *hcor;
const struct ehci_mxs_port *port;
if ((index < 0) || (index >= ARRAY_SIZE(mxs_port))) {
@ -148,27 +182,189 @@ int ehci_hcd_stop(int index)
port = &mxs_port[index];
/* Stop the USB port */
usb_base = port->usb_regs + 0x100;
hccr = (struct ehci_hccr *)usb_base;
cap_base = ehci_readl(&hccr->cr_capbase);
hcor = (struct ehci_hcor *)(usb_base + HC_LENGTH(cap_base));
tmp = ehci_readl(&hcor->or_usbcmd);
tmp &= ~CMD_RUN;
ehci_writel(&hcor->or_usbcmd, tmp);
/* Disable the PHY */
tmp = USBPHY_PWD_RXPWDRX | USBPHY_PWD_RXPWDDIFF |
USBPHY_PWD_RXPWD1PT1 | USBPHY_PWD_RXPWDENV |
USBPHY_PWD_TXPWDV2I | USBPHY_PWD_TXPWDIBIAS |
USBPHY_PWD_TXPWDFS;
writel(tmp, &port->phy_regs->hw_usbphy_pwd);
/* Disable USB clock */
ret = ehci_mxs_toggle_clock(port, 0);
ret = __ehci_hcd_stop(port);
board_ehci_hcd_exit(index);
return ret;
}
#else /* CONFIG_IS_ENABLED(DM_USB) */
struct ehci_mxs_priv_data {
struct ehci_ctrl ctrl;
struct usb_ehci *ehci;
struct udevice *vbus_supply;
struct ehci_mxs_port port;
enum usb_init_type init_type;
};
/*
* Below defines correspond to imx28 clk Linux (v5.15.y)
* clock driver to provide proper offset for PHY[01]
* devices.
*/
#define CLK_USB_PHY0 62
#define CLK_USB_PHY1 63
#define PLL0CTRL0(base) ((base) + 0x0000)
#define PLL1CTRL0(base) ((base) + 0x0020)
static int ehci_usb_ofdata_to_platdata(struct udevice *dev)
{
struct ehci_mxs_priv_data *priv = dev_get_priv(dev);
struct usb_plat *plat = dev_get_plat(dev);
struct ehci_mxs_port *port = &priv->port;
u32 phandle, phy_reg, clk_reg, clk_id;
ofnode phy_node, clk_node;
const char *mode;
int ret;
mode = ofnode_read_string(dev->node_, "dr_mode");
if (mode) {
if (strcmp(mode, "peripheral") == 0)
plat->init_type = USB_INIT_DEVICE;
else if (strcmp(mode, "host") == 0)
plat->init_type = USB_INIT_HOST;
else
return -EINVAL;
}
/* Read base address of the USB IP block */
ret = ofnode_read_u32(dev->node_, "reg", &port->usb_regs);
if (ret)
return ret;
/* Read base address of the USB PHY IP block */
ret = ofnode_read_u32(dev->node_, "fsl,usbphy", &phandle);
if (ret)
return ret;
phy_node = ofnode_get_by_phandle(phandle);
if (!ofnode_valid(phy_node))
return -ENODEV;
ret = ofnode_read_u32(phy_node, "reg", &phy_reg);
if (ret)
return ret;
port->phy_regs = (struct mxs_usbphy_regs *)phy_reg;
/* Read base address of the CLK IP block and proper ID */
ret = ofnode_read_u32_index(phy_node, "clocks", 0, &phandle);
if (ret)
return ret;
ret = ofnode_read_u32_index(phy_node, "clocks", 1, &clk_id);
if (ret)
return ret;
clk_node = ofnode_get_by_phandle(phandle);
if (!ofnode_valid(clk_node))
return -ENODEV;
ret = ofnode_read_u32(clk_node, "reg", &clk_reg);
if (ret)
return ret;
port->pll = (struct mxs_register_32 *)clk_reg;
/* Provide proper offset for USB PHY clocks */
if (clk_id == CLK_USB_PHY0)
port->pll = PLL0CTRL0(port->pll);
if (clk_id == CLK_USB_PHY1)
port->pll = PLL1CTRL0(port->pll);
debug("%s: pll_reg: 0x%p clk_id: %d\n", __func__, port->pll, clk_id);
/*
* On the imx28 the values provided by CLKCTRL_PLL0* defines to are the
* same as ones for CLKCTRL_PLL1*. As a result the former can be used
* for both ports - i.e. (usb[01]).
*/
port->pll_en_bits = CLKCTRL_PLL0CTRL0_EN_USB_CLKS |
CLKCTRL_PLL0CTRL0_POWER;
port->pll_dis_bits = CLKCTRL_PLL0CTRL0_EN_USB_CLKS;
port->gate_bits = HW_DIGCTL_CTRL_USB0_CLKGATE;
return 0;
}
static int ehci_usb_probe(struct udevice *dev)
{
struct usb_plat *plat = dev_get_plat(dev);
struct usb_ehci *ehci = dev_read_addr_ptr(dev);
struct ehci_mxs_priv_data *priv = dev_get_priv(dev);
struct ehci_mxs_port *port = &priv->port;
enum usb_init_type type = plat->init_type;
struct ehci_hccr *hccr;
struct ehci_hcor *hcor;
int ret;
priv->ehci = ehci;
priv->init_type = type;
debug("%s: USB type: %s reg: 0x%x phy_reg 0x%p\n", __func__,
type == USB_INIT_HOST ? "HOST" : "DEVICE", port->usb_regs,
(uint32_t *)port->phy_regs);
#if CONFIG_IS_ENABLED(DM_REGULATOR)
ret = device_get_supply_regulator(dev, "vbus-supply",
&priv->vbus_supply);
if (ret)
debug("%s: No vbus supply\n", dev->name);
if (!ret && priv->vbus_supply) {
ret = regulator_set_enable(priv->vbus_supply,
(type == USB_INIT_DEVICE) ?
false : true);
if (ret) {
puts("Error enabling VBUS supply\n");
return ret;
}
}
#endif
ret = __ehci_hcd_init(port, type, &hccr, &hcor);
if (ret)
return ret;
mdelay(10);
return ehci_register(dev, hccr, hcor, NULL, 0, priv->init_type);
}
static int ehci_usb_remove(struct udevice *dev)
{
struct ehci_mxs_priv_data *priv = dev_get_priv(dev);
struct ehci_mxs_port *port = &priv->port;
int ret;
ret = ehci_deregister(dev);
if (ret)
return ret;
#if CONFIG_IS_ENABLED(DM_REGULATOR)
if (priv->vbus_supply) {
ret = regulator_set_enable(priv->vbus_supply, false);
if (ret) {
puts("Error disabling VBUS supply\n");
return ret;
}
}
#endif
return __ehci_hcd_stop(port);
}
static const struct udevice_id mxs_usb_ids[] = {
{ .compatible = "fsl,imx28-usb" },
{ }
};
U_BOOT_DRIVER(usb_mxs) = {
.name = "ehci_mxs",
.id = UCLASS_USB,
.of_match = mxs_usb_ids,
.of_to_plat = ehci_usb_ofdata_to_platdata,
.probe = ehci_usb_probe,
.remove = ehci_usb_remove,
.ops = &ehci_usb_ops,
.plat_auto = sizeof(struct usb_plat),
.priv_auto = sizeof(struct ehci_mxs_priv_data),
.flags = DM_FLAG_ALLOC_PRIV_DMA,
};
#endif /* !CONFIG_IS_ENABLED(DM_USB) */

View file

@ -103,6 +103,7 @@ int drv_lcd_init(void);
int drv_video_init(void);
int drv_keyboard_init(void);
int drv_usbtty_init(void);
int drv_usbacm_init(void);
int drv_nc_init(void);
int drv_jtag_console_init(void);
int cbmemc_init(void);

View file

@ -299,6 +299,9 @@ config TRACE_EARLY_ADDR
the size is too small then the message which says the amount of early
data being coped will the the same as the
config CIRCBUF
bool "Enable circular buffer support"
source lib/dhry/Kconfig
menu "Security support"

View file

@ -29,7 +29,13 @@ ifneq ($(CONFIG_CHARSET),)
obj-y += charset.o
endif
endif
obj-$(CONFIG_USB_TTY) += circbuf.o
ifdef CONFIG_USB_TTY
obj-y += circbuf.o
else
obj-$(CONFIG_CIRCBUF) += circbuf.o
endif
obj-y += crc8.o
obj-y += crc16.o
obj-$(CONFIG_ERRNO_STR) += errno_str.o