Blackfin: drop unused cache flush code
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
This commit is contained in:
parent
50f0d21191
commit
2c1ea9e370
2 changed files with 1 additions and 231 deletions
|
@ -16,7 +16,7 @@ LIB = $(obj)lib$(CPU).a
|
|||
EXTRA :=
|
||||
CEXTRA := initcode.o
|
||||
SEXTRA := start.o
|
||||
SOBJS := interrupt.o cache.o flush.o
|
||||
SOBJS := interrupt.o cache.o
|
||||
COBJS := cpu.o traps.o interrupts.o reset.o serial.o i2c.o watchdog.o
|
||||
|
||||
ifeq ($(CONFIG_BFIN_BOOT_MODE),BFIN_BOOT_BYPASS)
|
||||
|
|
|
@ -1,230 +0,0 @@
|
|||
/* flush.S - low level cache flushing routines
|
||||
* Copyright (C) 2003-2007 Analog Devices Inc.
|
||||
* Licensed under the GPL-2 or later.
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
#include <asm/blackfin.h>
|
||||
#include <asm/cplb.h>
|
||||
#include <asm/mach-common/bits/mpu.h>
|
||||
|
||||
.text
|
||||
|
||||
/* This is an external function being called by the user
|
||||
* application through __flush_cache_all. Currently this function
|
||||
* serves the purpose of flushing all the pending writes in
|
||||
* in the data cache.
|
||||
*/
|
||||
|
||||
ENTRY(_flush_data_cache)
|
||||
[--SP] = ( R7:6, P5:4 );
|
||||
LINK 12;
|
||||
SP += -12;
|
||||
P5.H = HI(DCPLB_ADDR0);
|
||||
P5.L = LO(DCPLB_ADDR0);
|
||||
P4.H = HI(DCPLB_DATA0);
|
||||
P4.L = LO(DCPLB_DATA0);
|
||||
R7 = CPLB_VALID | CPLB_L1_CHBL | CPLB_DIRTY (Z);
|
||||
R6 = 16;
|
||||
.Lnext: R0 = [P5++];
|
||||
R1 = [P4++];
|
||||
CC = BITTST(R1, 14); /* Is it write-through?*/
|
||||
IF CC JUMP .Lskip; /* If so, ignore it.*/
|
||||
R2 = R1 & R7; /* Is it a dirty, cached page?*/
|
||||
CC = R2;
|
||||
IF !CC JUMP .Lskip; /* If not, ignore it.*/
|
||||
[--SP] = RETS;
|
||||
CALL _dcplb_flush; /* R0 = page, R1 = data*/
|
||||
RETS = [SP++];
|
||||
.Lskip: R6 += -1;
|
||||
CC = R6;
|
||||
IF CC JUMP .Lnext;
|
||||
SSYNC;
|
||||
SP += 12;
|
||||
UNLINK;
|
||||
( R7:6, P5:4 ) = [SP++];
|
||||
RTS;
|
||||
ENDPROC(_flush_data_cache)
|
||||
|
||||
/* This is an internal function to flush all pending
|
||||
* writes in the cache associated with a particular DCPLB.
|
||||
*
|
||||
* R0 - page's start address
|
||||
* R1 - CPLB's data field.
|
||||
*/
|
||||
|
||||
.align 2
|
||||
ENTRY(_dcplb_flush)
|
||||
[--SP] = ( R7:0, P5:0 );
|
||||
[--SP] = LC0;
|
||||
[--SP] = LT0;
|
||||
[--SP] = LB0;
|
||||
[--SP] = LC1;
|
||||
[--SP] = LT1;
|
||||
[--SP] = LB1;
|
||||
|
||||
/* If it's a 1K or 4K page, then it's quickest to
|
||||
* just systematically flush all the addresses in
|
||||
* the page, regardless of whether they're in the
|
||||
* cache, or dirty. If it's a 1M or 4M page, there
|
||||
* are too many addresses, and we have to search the
|
||||
* cache for lines corresponding to the page.
|
||||
*/
|
||||
|
||||
CC = BITTST(R1, 17); /* 1MB or 4MB */
|
||||
IF !CC JUMP .Ldflush_whole_page;
|
||||
|
||||
/* We're only interested in the page's size, so extract
|
||||
* this from the CPLB (bits 17:16), and scale to give an
|
||||
* offset into the page_size and page_prefix tables.
|
||||
*/
|
||||
|
||||
R1 <<= 14;
|
||||
R1 >>= 30;
|
||||
R1 <<= 2;
|
||||
|
||||
/* The page could be mapped into Bank A or Bank B, depending
|
||||
* on (a) whether both banks are configured as cache, and
|
||||
* (b) on whether address bit A[x] is set. x is determined
|
||||
* by DCBS in DMEM_CONTROL
|
||||
*/
|
||||
|
||||
R2 = 0; /* Default to Bank A (Bank B would be 1)*/
|
||||
|
||||
P0.L = LO(DMEM_CONTROL);
|
||||
P0.H = HI(DMEM_CONTROL);
|
||||
|
||||
R3 = [P0]; /* If Bank B is not enabled as cache*/
|
||||
CC = BITTST(R3, 2); /* then Bank A is our only option.*/
|
||||
IF CC JUMP .Lbank_chosen;
|
||||
|
||||
R4 = 1<<14; /* If DCBS==0, use A[14].*/
|
||||
R5 = R4 << 7; /* If DCBS==1, use A[23];*/
|
||||
CC = BITTST(R3, 4);
|
||||
IF CC R4 = R5; /* R4 now has either bit 14 or bit 23 set.*/
|
||||
R5 = R0 & R4; /* Use it to test the Page address*/
|
||||
CC = R5; /* and if that bit is set, we use Bank B,*/
|
||||
R2 = CC; /* else we use Bank A.*/
|
||||
R2 <<= 23; /* The Bank selection's at posn 23.*/
|
||||
|
||||
.Lbank_chosen:
|
||||
|
||||
/* We can also determine the sub-bank used, because this is
|
||||
* taken from bits 13:12 of the address.
|
||||
*/
|
||||
|
||||
R3 = ((12<<8)|2); /* Extraction pattern */
|
||||
nop; /*Anamoly 05000209*/
|
||||
R4 = EXTRACT(R0, R3.L) (Z); /* Extract bits*/
|
||||
/* Save in extraction pattern for later deposit.*/
|
||||
R3.H = R4.L << 0;
|
||||
|
||||
/* So:
|
||||
* R0 = Page start
|
||||
* R1 = Page length (actually, offset into size/prefix tables)
|
||||
* R2 = Bank select mask
|
||||
* R3 = sub-bank deposit values
|
||||
*
|
||||
* The cache has 2 Ways, and 64 sets, so we iterate through
|
||||
* the sets, accessing the tag for each Way, for our Bank and
|
||||
* sub-bank, looking for dirty, valid tags that match our
|
||||
* address prefix.
|
||||
*/
|
||||
|
||||
P5.L = LO(DTEST_COMMAND);
|
||||
P5.H = HI(DTEST_COMMAND);
|
||||
P4.L = LO(DTEST_DATA0);
|
||||
P4.H = HI(DTEST_DATA0);
|
||||
|
||||
P0.L = page_prefix_table;
|
||||
P0.H = page_prefix_table;
|
||||
P1 = R1;
|
||||
R5 = 0; /* Set counter*/
|
||||
P0 = P1 + P0;
|
||||
R4 = [P0]; /* This is the address prefix*/
|
||||
|
||||
|
||||
/* We're reading (bit 1==0) the tag (bit 2==0), and we
|
||||
* don't care about which double-word, since we're only
|
||||
* fetching tags, so we only have to set Set, Bank,
|
||||
* Sub-bank and Way.
|
||||
*/
|
||||
|
||||
P2 = 2;
|
||||
LSETUP (.Lfs1, .Lfe1) LC1 = P2;
|
||||
.Lfs1: P0 = 64; /* iterate over all sets*/
|
||||
LSETUP (.Lfs0, .Lfe0) LC0 = P0;
|
||||
.Lfs0: R6 = R5 << 5; /* Combine set*/
|
||||
R6.H = R3.H << 0 ; /* and sub-bank*/
|
||||
R6 = R6 | R2; /* and Bank. Leave Way==0 at first.*/
|
||||
BITSET(R6,14);
|
||||
[P5] = R6; /* Issue Command*/
|
||||
SSYNC;
|
||||
R7 = [P4]; /* and read Tag.*/
|
||||
CC = BITTST(R7, 0); /* Check if valid*/
|
||||
IF !CC JUMP .Lfskip; /* and skip if not.*/
|
||||
CC = BITTST(R7, 1); /* Check if dirty*/
|
||||
IF !CC JUMP .Lfskip; /* and skip if not.*/
|
||||
|
||||
/* Compare against the page address. First, plant bits 13:12
|
||||
* into the tag, since those aren't part of the returned data.
|
||||
*/
|
||||
|
||||
R7 = DEPOSIT(R7, R3); /* set 13:12*/
|
||||
R1 = R7 & R4; /* Mask off lower bits*/
|
||||
CC = R1 == R0; /* Compare against page start.*/
|
||||
IF !CC JUMP .Lfskip; /* Skip it if it doesn't match.*/
|
||||
|
||||
/* Tag address matches against page, so this is an entry
|
||||
* we must flush.
|
||||
*/
|
||||
|
||||
R7 >>= 10; /* Mask off the non-address bits*/
|
||||
R7 <<= 10;
|
||||
P3 = R7;
|
||||
SSYNC;
|
||||
FLUSHINV [P3]; /* And flush the entry*/
|
||||
.Lfskip:
|
||||
.Lfe0: R5 += 1; /* Advance to next Set*/
|
||||
.Lfe1: BITSET(R2, 26); /* Go to next Way.*/
|
||||
|
||||
.Ldfinished:
|
||||
SSYNC; /* Ensure the data gets out to mem.*/
|
||||
|
||||
/*Finished. Restore context.*/
|
||||
LB1 = [SP++];
|
||||
LT1 = [SP++];
|
||||
LC1 = [SP++];
|
||||
LB0 = [SP++];
|
||||
LT0 = [SP++];
|
||||
LC0 = [SP++];
|
||||
( R7:0, P5:0 ) = [SP++];
|
||||
RTS;
|
||||
|
||||
.Ldflush_whole_page:
|
||||
|
||||
/* It's a 1K or 4K page, so quicker to just flush the
|
||||
* entire page.
|
||||
*/
|
||||
|
||||
P1 = 32; /* For 1K pages*/
|
||||
P2 = P1 << 2; /* For 4K pages*/
|
||||
P0 = R0; /* Start of page*/
|
||||
CC = BITTST(R1, 16); /* Whether 1K or 4K*/
|
||||
IF CC P1 = P2;
|
||||
P1 += -1; /* Unroll one iteration*/
|
||||
SSYNC;
|
||||
FLUSHINV [P0++]; /* because CSYNC can't end loops.*/
|
||||
LSETUP (.Leall, .Leall) LC0 = P1;
|
||||
.Leall: FLUSHINV [P0++];
|
||||
SSYNC;
|
||||
JUMP .Ldfinished;
|
||||
ENDPROC(_dcplb_flush)
|
||||
|
||||
.align 4;
|
||||
page_prefix_table:
|
||||
.byte4 0xFFFFFC00; /* 1K */
|
||||
.byte4 0xFFFFF000; /* 4K */
|
||||
.byte4 0xFFF00000; /* 1M */
|
||||
.byte4 0xFFC00000; /* 4M */
|
||||
.page_prefix_table.end:
|
Loading…
Reference in a new issue