Merge branch '2020-10-08-misc-board-improvements'

- Move ASPEED ram driver, update.
- Exhance pinctrl/gpio support, update Kendryte K210 support
- Enhance qemu_arm64 support for a single binary to work with and
  without TF-A
This commit is contained in:
Tom Rini 2020-10-09 08:58:56 -04:00
commit 0570938e3c
37 changed files with 2170 additions and 302 deletions

View file

@ -422,6 +422,14 @@ config SYS_SRAM_SIZE
default 0x10000 if TARGET_TRICORDER
default 0x0
config EXAMPLES
bool "Compile API examples"
depends on !SANDBOX
default y if ARCH_QEMU
help
U-Boot provides an API for standalone applications. Examples are
provided in directory examples/.
endmenu # General setup
menu "Boot images"

View file

@ -935,7 +935,9 @@ RISC-V KENDRYTE
M: Sean Anderson <seanga2@gmail.com>
S: Maintained
F: doc/device-tree-bindings/mfd/kendryte,k210-sysctl.txt
F: doc/device-tree-bindings/pinctrl/kendryte,k210-fpioa.txt
F: drivers/clk/kendryte/
F: drivers/pinctrl/kendryte/
F: include/kendryte/
RNG
@ -960,6 +962,7 @@ M: Simon Glass <sjg@chromium.org>
S: Maintained
F: arch/sandbox/
F: doc/arch/sandbox.rst
F: include/dt-bindings/*/sandbox*.h
SH
M: Marek Vasut <marek.vasut+renesas@gmail.com>

View file

@ -12,7 +12,6 @@ config ARM64
if ARM64
config POSITION_INDEPENDENT
bool "Generate position-independent pre-relocation code"
select INIT_SP_RELATIVE
help
U-Boot expects to be linked to a specific hard-coded address, and to
be loaded to and run from that address. This option lifts that
@ -23,6 +22,8 @@ config POSITION_INDEPENDENT
config INIT_SP_RELATIVE
bool "Specify the early stack pointer relative to the .bss section"
default n if ARCH_QEMU
default y if POSITION_INDEPENDENT
help
U-Boot typically uses a hard-coded value for the stack pointer
before relocation. Enable this option to instead calculate the
@ -76,7 +77,7 @@ config GIC_V3_ITS
config STATIC_RELA
bool
default y if ARM64 && !POSITION_INDEPENDENT
default y if ARM64
config DMA_ADDR_T_64BIT
bool
@ -932,7 +933,6 @@ config ARCH_OWL
config ARCH_QEMU
bool "QEMU Virtual Platform"
select ARCH_SUPPORT_TFABOOT
select DM
select DM_SERIAL
select OF_CONTROL
@ -1801,8 +1801,13 @@ config TFABOOT
depends on ARCH_SUPPORT_TFABOOT
default n
help
Enabling this will make a U-Boot binary that is capable of being
booted via TF-A (Trusted Firmware for Cortex-A).
Some platforms support the setup of secure registers (for instance
for CPU errata handling) or provide secure services like PSCI.
Those services could also be provided by other firmware parts
like TF-A (Trusted Firmware for Cortex-A), in which case U-Boot
does not need to (and cannot) execute this code.
Enabling this option will make a U-Boot binary that is relying
on other firmware layers to provide secure functionality.
config TI_SECURE_DEVICE
bool "HS Device Type Support"

View file

@ -83,7 +83,8 @@ save_boot_params_ret:
pie_fixup:
adr x0, _start /* x0 <- Runtime value of _start */
ldr x1, _TEXT_BASE /* x1 <- Linked value of _start */
sub x9, x0, x1 /* x9 <- Run-vs-link offset */
subs x9, x0, x1 /* x9 <- Run-vs-link offset */
beq pie_fixup_done
adrp x2, __rel_dyn_start /* x2 <- Runtime &__rel_dyn_start */
add x2, x2, #:lo12:__rel_dyn_start
adrp x3, __rel_dyn_end /* x3 <- Runtime &__rel_dyn_end */

View file

@ -1,3 +1,3 @@
obj-y += lowlevel_init.o
obj-y += board_common.o
obj-y += clk_ast2500.o sdram_ast2500.o
obj-y += clk_ast2500.o

View file

@ -8,6 +8,7 @@
#include "k210.dtsi"
#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/input/input.h>
/ {
model = "Sipeed Maix Bit 2.0";
@ -17,6 +18,32 @@
stdout-path = "serial0:115200";
};
gpio-leds {
compatible = "gpio-leds";
green {
gpios = <&gpio1_0 4 GPIO_ACTIVE_LOW>;
};
red {
gpios = <&gpio1_0 5 GPIO_ACTIVE_LOW>;
};
blue {
gpios = <&gpio1_0 6 GPIO_ACTIVE_LOW>;
};
};
gpio-keys {
compatible = "gpio-keys";
boot {
label = "BOOT";
linux,code = <BTN_0>;
gpios = <&gpio0 0 GPIO_ACTIVE_LOW>;
};
};
sound {
compatible = "simple-audio-card";
simple-audio-card,format = "i2s";
@ -39,9 +66,97 @@
};
&uarths0 {
pinctrl-0 = <&fpioa_uarths>;
pinctrl-names = "default";
status = "okay";
};
&gpio0 {
pinctrl-0 = <&fpioa_gpiohs>;
pinctrl-names = "default";
status = "okay";
};
&gpio1 {
pinctrl-0 = <&fpioa_gpio>;
pinctrl-names = "default";
status = "okay";
};
&i2s0 {
#sound-dai-cells = <1>;
pinctrl-0 = <&fpioa_i2s0>;
pinctrl-names = "default";
};
&fpioa {
status = "okay";
fpioa_uarths: uarths {
pinmux = <K210_FPIOA(4, K210_PCF_UARTHS_RX)>,
<K210_FPIOA(5, K210_PCF_UARTHS_TX)>;
};
fpioa_gpio: gpio {
pinmux = <K210_FPIOA(8, K210_PCF_GPIO0)>,
<K210_FPIOA(9, K210_PCF_GPIO1)>,
<K210_FPIOA(10, K210_PCF_GPIO2)>,
<K210_FPIOA(11, K210_PCF_GPIO3)>,
<K210_FPIOA(12, K210_PCF_GPIO4)>,
<K210_FPIOA(13, K210_PCF_GPIO5)>,
<K210_FPIOA(14, K210_PCF_GPIO6)>,
<K210_FPIOA(15, K210_PCF_GPIO7)>;
};
fpioa_gpiohs: gpiohs {
pinmux = <K210_FPIOA(16, K210_PCF_GPIOHS0)>,
<K210_FPIOA(17, K210_PCF_GPIOHS1)>,
<K210_FPIOA(21, K210_PCF_GPIOHS5)>,
<K210_FPIOA(22, K210_PCF_GPIOHS6)>,
<K210_FPIOA(23, K210_PCF_GPIOHS7)>,
<K210_FPIOA(24, K210_PCF_GPIOHS8)>,
<K210_FPIOA(25, K210_PCF_GPIOHS9)>,
<K210_FPIOA(30, K210_PCF_GPIOHS14)>,
<K210_FPIOA(31, K210_PCF_GPIOHS15)>,
<K210_FPIOA(32, K210_PCF_GPIOHS16)>,
<K210_FPIOA(33, K210_PCF_GPIOHS17)>,
<K210_FPIOA(34, K210_PCF_GPIOHS18)>,
<K210_FPIOA(35, K210_PCF_GPIOHS19)>;
};
fpioa_i2s0: i2s0 {
pinmux = <K210_FPIOA(18, K210_PCF_I2S0_SCLK)>,
<K210_FPIOA(19, K210_PCF_I2S0_WS)>,
<K210_FPIOA(20, K210_PCF_I2S0_IN_D0)>;
};
fpioa_dvp: dvp {
pinmux = <K210_FPIOA(40, K210_PCF_SCCB_SDA)>,
<K210_FPIOA(41, K210_PCF_SCCB_SCLK)>,
<K210_FPIOA(42, K210_PCF_DVP_RST)>,
<K210_FPIOA(43, K210_PCF_DVP_VSYNC)>,
<K210_FPIOA(44, K210_PCF_DVP_PWDN)>,
<K210_FPIOA(45, K210_PCF_DVP_HSYNC)>,
<K210_FPIOA(46, K210_PCF_DVP_XCLK)>,
<K210_FPIOA(47, K210_PCF_DVP_PCLK)>;
};
fpioa_spi0: spi0 {
pinmux = <K210_FPIOA(36, K210_PCF_GPIOHS20)>, /* cs */
<K210_FPIOA(37, K210_PCF_GPIOHS21)>, /* rst */
<K210_FPIOA(38, K210_PCF_GPIOHS22)>, /* dc */
<K210_FPIOA(39, K210_PCF_SPI0_SCLK)>; /* wr */
};
fpioa_spi1: spi1 {
pinmux = <K210_FPIOA(26, K210_PCF_SPI1_D1)>,
<K210_FPIOA(27, K210_PCF_SPI1_SCLK)>,
<K210_FPIOA(28, K210_PCF_SPI1_D0)>,
<K210_FPIOA(29, K210_PCF_GPIOHS13)>;
};
};
&dvp0 {
pinctrl-0 = <&fpioa_dvp>;
pinctrl-names = "default";
};

View file

@ -5,6 +5,7 @@
#include <dt-bindings/clock/k210-sysctl.h>
#include <dt-bindings/mfd/k210-sysctl.h>
#include <dt-bindings/pinctrl/k210-pinctrl.h>
#include <dt-bindings/reset/k210-sysctl.h>
/ {
@ -368,7 +369,18 @@
reg = <0x502B0000 0x100>;
clocks = <&sysclk K210_CLK_FPIOA>;
resets = <&sysrst K210_RST_FPIOA>;
kendryte,sysctl = <&sysctl>;
kendryte,power-offset = <K210_SYSCTL_POWER_SEL>;
pinctrl-0 = <&fpioa_jtag>;
pinctrl-names = "default";
status = "disabled";
fpioa_jtag: jtag {
pinmux = <K210_FPIOA(0, K210_PCF_JTAG_TCLK)>,
<K210_FPIOA(1, K210_PCF_JTAG_TDI)>,
<K210_FPIOA(2, K210_PCF_JTAG_TMS)>,
<K210_FPIOA(3, K210_PCF_JTAG_TDO)>;
};
};
sha256: sha256@502C0000 {

View file

@ -2,6 +2,7 @@
#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/gpio/sandbox-gpio.h>
#include <dt-bindings/pinctrl/sandbox-pinmux.h>
/ {
model = "sandbox";
@ -558,7 +559,7 @@
default_off {
gpios = <&gpio_a 6 0>;
label = "sandbox:default_off";
/* label intentionally omitted */
default-state = "off";
};
};
@ -1094,30 +1095,60 @@
pinctrl {
compatible = "sandbox,pinctrl";
pinctrl-names = "default";
pinctrl-0 = <&gpios>;
pinctrl-names = "default", "alternate";
pinctrl-0 = <&pinctrl_gpios>, <&pinctrl_i2s>;
pinctrl-1 = <&pinctrl_spi>, <&pinctrl_i2c>;
gpios: gpios {
pinctrl_gpios: gpios {
gpio0 {
pins = "GPIO0";
pins = "P5";
function = "GPIO";
bias-pull-up;
input-disable;
};
gpio1 {
pins = "GPIO1";
pins = "P6";
function = "GPIO";
output-high;
drive-open-drain;
};
gpio2 {
pins = "GPIO2";
pinmux = <SANDBOX_PINMUX(7, SANDBOX_PINMUX_GPIO)>;
bias-pull-down;
input-enable;
};
gpio3 {
pins = "GPIO3";
pinmux = <SANDBOX_PINMUX(8, SANDBOX_PINMUX_GPIO)>;
bias-disable;
};
};
pinctrl_i2c: i2c {
groups {
groups = "I2C_UART";
function = "I2C";
};
pins {
pins = "P0", "P1";
drive-open-drain;
};
};
pinctrl_i2s: i2s {
groups = "SPI_I2S";
function = "I2S";
};
pinctrl_spi: spi {
groups = "SPI_I2S";
function = "SPI";
cs {
pinmux = <SANDBOX_PINMUX(5, SANDBOX_PINMUX_CS)>,
<SANDBOX_PINMUX(6, SANDBOX_PINMUX_CS)>;
};
};
};
hwspinlock@0 {

View file

@ -44,4 +44,13 @@ config BOARD_SPECIFIC_OPTIONS
imply RESET_SYSCON
imply SYSRESET
imply SYSRESET_SYSCON
imply PINCTRL
imply PINCONF
imply PINCTRL_K210
imply DM_GPIO
imply DWAPB_GPIO
imply SIFIVE_GPIO
imply CMD_GPIO
imply LED
imply LED_GPIO
endif

View file

@ -1,6 +1,7 @@
CONFIG_ARM=y
CONFIG_ARCH_QEMU=y
CONFIG_NR_DRAM_BANKS=1
CONFIG_POSITION_INDEPENDENT=y
CONFIG_ENV_SIZE=0x40000
CONFIG_ENV_SECT_SIZE=0x40000
CONFIG_AHCI=y

View file

@ -9,6 +9,7 @@ U-Boot API documentation
dfu
efi
linker_lists
pinctrl
rng
serial
unicode

7
doc/api/pinctrl.rst Normal file
View file

@ -0,0 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0+
Pinctrl and Pinmux
==================
.. kernel-doc:: include/dm/pinctrl.h
:internal:

View file

@ -199,7 +199,7 @@ To run legacy images, use the ``bootm`` command:
Load Address: 80000000
Entry Point: 80000000
$ picocom -b 115200 /dev/ttyUSB0i
$ picocom -b 115200 /dev/ttyUSB0
=> loady
## Ready for binary (ymodem) download to 0x80000000 at 115200 bps...
C
@ -230,6 +230,66 @@ To run legacy images, use the ``bootm`` command:
argv[0] = "<NULL>"
Hit any key to exit ...
Pin Assignment
--------------
The K210 contains a Fully Programmable I/O Array (FPIOA), which can remap any of
its 256 input functions to any any of 48 output pins. The following table has
the default pin assignments for the BitM.
===== ========== =======
Pin Function Comment
===== ========== =======
IO_0 JTAG_TCLK
IO_1 JTAG_TDI
IO_2 JTAG_TMS
IO_3 JTAG_TDO
IO_4 UARTHS_RX
IO_5 UARTHS_TX
IO_6 Not set
IO_7 Not set
IO_8 GPIO_0
IO_9 GPIO_1
IO_10 GPIO_2
IO_11 GPIO_3
IO_12 GPIO_4 Green LED
IO_13 GPIO_5 Red LED
IO_14 GPIO_6 Blue LED
IO_15 GPIO_7
IO_16 GPIOHS_0 ISP
IO_17 GPIOHS_1
IO_18 I2S0_SCLK MIC CLK
IO_19 I2S0_WS MIC WS
IO_20 I2S0_IN_D0 MIC SD
IO_21 GPIOHS_5
IO_22 GPIOHS_6
IO_23 GPIOHS_7
IO_24 GPIOHS_8
IO_25 GPIOHS_9
IO_26 SPI1_D1 MMC MISO
IO_27 SPI1_SCLK MMC CLK
IO_28 SPI1_D0 MMC MOSI
IO_29 GPIOHS_13 MMC CS
IO_30 GPIOHS_14
IO_31 GPIOHS_15
IO_32 GPIOHS_16
IO_33 GPIOHS_17
IO_34 GPIOHS_18
IO_35 GPIOHS_19
IO_36 GPIOHS_20 Panel CS
IO_37 GPIOHS_21 Panel RST
IO_38 GPIOHS_22 Panel DC
IO_39 SPI0_SCK Panel WR
IO_40 SCCP_SDA
IO_41 SCCP_SCLK
IO_42 DVP_RST
IO_43 DVP_VSYNC
IO_44 DVP_PWDN
IO_45 DVP_HSYNC
IO_46 DVP_XCLK
IO_47 DVP_PCLK
===== ========== =======
Over- and Under-clocking
------------------------
@ -408,7 +468,7 @@ Address Size Description
0x8801C000 0x1000 riscv priv spec 1.9 config
0x8801D000 0x2000 flattened device tree (contains only addresses and
interrupts)
0x8801f000 0x1000 credits
0x8801F000 0x1000 credits
========== ========= ===========
Links

View file

@ -0,0 +1,102 @@
Kendryte K210 FPIOA
This binding describes the Fully-Programmable Input/Output Array (FPIOA) found
in Kendryte K210 SoCs. Any of the 256 functions can be mapped to any of the 48
pins.
Required properties:
- compatible: should be "kendryte,k210-fpioa"
- reg: address and length of the FPIOA registers
- kendryte,sysctl: phandle to the "sysctl" register map node
- kendryte,power-offset: offset in the register map of the power bank control
register (in bytes)
Configuration nodes
Pin configuration nodes are documented in pinctrl-bindings.txt
Required properties for pin-configuration nodes or sub-nodes are:
- groups: list of power groups to which the configuration applies. Valid groups
are:
A0, A1, A2, B0, B1, B2, C0, C1
(either this or "pinmux" must be specified)
- pinmux: integer array representing pin multiplexing configuration. In addition
to the 256 standard functions, each pin can also output the direction
indicator (DO) of any function. This signal is high whenever the function
would normally drive the output. Helper macros to ease assembling the "pinmux"
arguments from the pin and function are provided by the FPIOA header file at:
<dt-bindings/pinctrl/k210-pinctrl.h>
Integer values in the "pinmux" argument list are assembled as:
((PIN << 16) | (DO << 8) | (FUNC))
Valid values for PIN are numbers 0 through 47.
Valid values for DO are 0 or 1.
Valid values for FUNC are numbers 0 through 255. For a complete list of
acceptable functions, consult the FPIOA header file.
(either this or "groups" must be specified)
Optional properties for "pinmux" nodes are:
bias-disable, bias-pull-down, bias-pull-up, drive-strength,
drive-strength-ua, input-enable, input-disable, input-schmitt-enable,
input-schmitt-disable, output-low, output-high, output-enable,
output-disable, slew-rate, output-polarity-invert, input-polarity-invert
Optional properties for "groups" nodes are:
power-source
Notes on specific properties include:
- bias-pull-up, -down, and -pin-default: The pull strength cannot be configured.
- drive-strength: There are 8 drive strength settings between 11 and 50 mA.
- input- and output-polarity-invert: Invert the polarity of either the input or
the output, respectively.
- power-source: Controls the output voltage of a bank of pins. Either
K210_PC_POWER_1V8 or K210_PC_POWER_3V3 may be specified.
- slew-rate: Specifying this property reduces the slew rate.
Example:
fpioa: pinmux@502B0000 {
compatible = "kendryte,k210-fpioa";
reg = <0x502B0000 0x100>;
kendryte,sysctl = <&sysctl>;
kendryte,power-offset = <K210_SYSCTL_POWER_SEL>;
/* JTAG running at 3.3V and driven at 11 mA */
fpioa_jtag: jtag {
voltage {
group = "A0";
power-source = <K210_PC_POWER_3V3>;
};
jtag {
pinmux = <K210_FPIOA(0, K210_PCF_JTAG_TCK)>,
<K210_FPIOA(1, K210_PCF_JTAG_TDI)>,
<K210_FPIOA(2, K210_PCF_JTAG_TMS)>,
<K210_FPIOA(3, K210_PCF_JTAG_TDO)>;
drive-strength = <11>;
}
};
/* I2C configured for use with a TCA9800 level shifter */
fpioa_i2c: i2c {
i2c {
pinmux = <K210_FPIOA(6, K210_PCF_I2C0_SCLK)>,
<K210_FPIOA(7, K210_PCF_I2C0_SDA)>;
};
direction {
pinmux = <K210_FPIOA_DO(8, K210_PCF_I2C0_SDA)>;
output-polarity-invert;
};
};
/* UART with an active-high TX status LED */
fpioa_uart1: uart1 {
uart {
pinmux = <K210_FPIOA(9, K210_PCF_UART1_TX)>,
<K210_FPIOA(10, K210_PCF_UART1_RX)>;
};
status {
pinmux = <K210_FPIOA_DO(11, K210_PCF_UART1_TX)>;
};
};
};

View file

@ -119,7 +119,8 @@ For example:
The contents of each of those pin configuration child nodes is defined
entirely by the binding for the individual pin controller device. There
exists no common standard for this content.
exists no common standard for this content. The pinctrl framework only
provides generic helper bindings that the pin controller driver can use.
The pin configuration nodes need not be direct children of the pin controller
device; they may be grandchildren, for example. Whether this is legal, and
@ -156,6 +157,29 @@ state_2_node_a {
pins = "mfio29", "mfio30";
};
For hardware where pin multiplexing configurations have to be specified for
each single pin the number of required sub-nodes containing "pin" and
"function" properties can quickly escalate and become hard to write and
maintain.
For cases like this, the pin controller driver may use the pinmux helper
property, where the pin identifier is provided with mux configuration settings
in a pinmux group. A pinmux group consists of the pin identifier and mux
settings represented as a single integer or an array of integers.
The pinmux property accepts an array of pinmux groups, each of them describing
a single pin multiplexing configuration.
pincontroller {
state_0_node_a {
pinmux = <PINMUX_GROUP>, <PINMUX_GROUP>, ...;
};
};
Each individual pin controller driver bindings documentation shall specify
how pin IDs and pin multiplexing configuration are defined and assembled
together in a pinmux group.
== Generic pin configuration node content ==
Many data items that are represented in a pin configuration node are common
@ -168,12 +192,15 @@ structure of the DT nodes that contain these properties.
Supported generic properties are:
pins - the list of pins that properties in the node
apply to (either this or "group" has to be
apply to (either this, "group" or "pinmux" has to be
specified)
group - the group to apply the properties to, if the driver
supports configuration of whole groups rather than
individual pins (either this or "pins" has to be
specified)
individual pins (either this, "pins" or "pinmux" has
to be specified)
pinmux - the list of numeric pin ids and their mux settings
that properties in the node apply to (either this,
"pins" or "groups" have to be specified)
bias-disable - disable any pin bias
bias-high-impedance - high impedance mode ("third-state", "floating")
bias-bus-hold - latch weakly
@ -184,17 +211,30 @@ drive-push-pull - drive actively high and low
drive-open-drain - drive with open drain
drive-open-source - drive with open source
drive-strength - sink or source at most X mA
input-enable - enable input on pin (no effect on output)
input-disable - disable input on pin (no effect on output)
drive-strength-microamp - sink or source at most X uA
input-enable - enable input on pin (no effect on output, such as
enabling an input buffer)
input-disable - disable input on pin (no effect on output, such as
disabling an input buffer)
input-schmitt-enable - enable schmitt-trigger mode
input-schmitt-disable - disable schmitt-trigger mode
input-debounce - debounce mode with debound time X
power-source - select between different power supplies
low-power-enable - enable low power mode
low-power-disable - disable low power mode
output-disable - disable output on a pin (such as disable an output
buffer)
output-enable - enable output on a pin without actively driving it
(such as enabling an output buffer)
output-low - set the pin to output mode with low level
output-high - set the pin to output mode with high level
sleep-hardware-state - indicate this is sleep related state which will be programmed
into the registers for the sleep state.
slew-rate - set the slew rate
skew-delay - this affects the expected clock skew on input pins
and the delay before latching a value to an output
pin. Typically indicates how many double-inverters are
used to delay the signal.
For example:
@ -216,6 +256,12 @@ state_2_node_a {
bias-pull-up;
};
};
state_3_node_a {
mux {
pinmux = <GPIOx_PINm_MUXn>, <GPIOx_PINj_MUXk)>;
input-enable;
};
};
Some of the generic properties take arguments. For those that do, the
arguments are described below.
@ -224,11 +270,18 @@ arguments are described below.
binding for the hardware defines:
- Whether the entries are integers or strings, and their meaning.
- pinmux takes a list of pin IDs and mux settings as required argument. The
specific bindings for the hardware defines:
- How pin IDs and mux settings are defined and assembled together in a single
integer or an array of integers.
- bias-pull-up, -down and -pin-default take as optional argument on hardware
supporting it the pull strength in Ohm. bias-disable will disable the pull.
- drive-strength takes as argument the target strength in mA.
- drive-strength-microamp takes as argument the target strength in uA.
- input-debounce takes the debounce time in usec as argument
or 0 to disable debouncing

View file

@ -40,7 +40,7 @@ struct gpio_dwapb_platdata {
const char *name;
int bank;
int pins;
fdt_addr_t base;
void __iomem *base;
};
static int dwapb_gpio_direction_input(struct udevice *dev, unsigned pin)
@ -66,13 +66,6 @@ static int dwapb_gpio_direction_output(struct udevice *dev, unsigned pin,
return 0;
}
static int dwapb_gpio_get_value(struct udevice *dev, unsigned pin)
{
struct gpio_dwapb_platdata *plat = dev_get_platdata(dev);
return !!(readl(plat->base + GPIO_EXT_PORT(plat->bank)) & (1 << pin));
}
static int dwapb_gpio_set_value(struct udevice *dev, unsigned pin, int val)
{
struct gpio_dwapb_platdata *plat = dev_get_platdata(dev);
@ -98,6 +91,18 @@ static int dwapb_gpio_get_function(struct udevice *dev, unsigned offset)
return GPIOF_INPUT;
}
static int dwapb_gpio_get_value(struct udevice *dev, unsigned pin)
{
struct gpio_dwapb_platdata *plat = dev_get_platdata(dev);
u32 value;
if (dwapb_gpio_get_function(dev, pin) == GPIOF_OUTPUT)
value = readl(plat->base + GPIO_SWPORT_DR(plat->bank));
else
value = readl(plat->base + GPIO_EXT_PORT(plat->bank));
return !!(value & BIT(pin));
}
static const struct dm_gpio_ops gpio_dwapb_ops = {
.direction_input = dwapb_gpio_direction_input,
.direction_output = dwapb_gpio_direction_output,
@ -176,7 +181,7 @@ static int gpio_dwapb_bind(struct udevice *dev)
if (!plat)
return -ENOMEM;
plat->base = base;
plat->base = (void *)base;
plat->bank = bank;
plat->pins = ofnode_read_u32_default(node, "snps,nr-gpios", 0);
@ -186,7 +191,15 @@ static int gpio_dwapb_bind(struct udevice *dev)
* Fall back to node name. This means accessing pins
* via bank name won't work.
*/
plat->name = ofnode_get_name(node);
char name[32];
snprintf(name, sizeof(name), "%s_",
ofnode_get_name(node));
plat->name = strdup(name);
if (!plat->name) {
kfree(plat);
return -ENOMEM;
}
}
ret = device_bind_ofnode(dev, dev->driver, plat->name,

View file

@ -99,11 +99,8 @@ static int led_gpio_bind(struct udevice *parent)
const char *label;
label = ofnode_read_string(node, "label");
if (!label) {
debug("%s: node %s has no label\n", __func__,
ofnode_get_name(node));
return -EINVAL;
}
if (!label)
label = ofnode_get_name(node);
ret = device_bind_driver_to_node(parent, "gpio_led",
ofnode_get_name(node),
node, &dev);

View file

@ -291,6 +291,13 @@ config ASPEED_AST2500_PINCTRL
uses Generic Pinctrl framework and is compatible with the Linux
driver, i.e. it uses the same device tree configuration.
config PINCTRL_K210
bool "Kendryte K210 Fully-Programmable Input/Output Array driver"
depends on DM && PINCTRL_GENERIC
help
Support pin multiplexing on the K210. The "FPIOA" can remap any
supported function to any multifunctional IO pin. It can also perform
basic GPIO functions, such as reading the current value of a pin.
endif
source "drivers/pinctrl/broadcom/Kconfig"

View file

@ -17,6 +17,7 @@ obj-$(CONFIG_PINCTRL_SANDBOX) += pinctrl-sandbox.o
obj-$(CONFIG_PINCTRL_UNIPHIER) += uniphier/
obj-$(CONFIG_PINCTRL_PIC32) += pinctrl_pic32.o
obj-$(CONFIG_PINCTRL_EXYNOS) += exynos/
obj-$(CONFIG_PINCTRL_K210) += pinctrl-kendryte.o
obj-$(CONFIG_PINCTRL_MESON) += meson/
obj-$(CONFIG_PINCTRL_MTK) += mediatek/
obj-$(CONFIG_PINCTRL_MSCC) += mscc/

View file

@ -227,6 +227,13 @@ static int pinconf_enable_setting(struct udevice *dev, bool is_group,
}
#endif
enum pinmux_subnode_type {
PST_NONE = 0,
PST_PIN,
PST_GROUP,
PST_PINMUX,
};
/**
* pinctrl_generic_set_state_one() - set state for a certain pin/group
* Apply all pin multiplexing and pin configurations specified by @config
@ -234,13 +241,15 @@ static int pinconf_enable_setting(struct udevice *dev, bool is_group,
*
* @dev: pin controller device
* @config: pseudo device pointing to config node
* @is_group: target of operation (true: pin group, false: pin)
* @selector: pin selector or group selector, depending on @is_group
* @subnode_type: target of operation (pin, group, or pin specified by a pinmux
* group)
* @selector: pin selector or group selector, depending on @subnode_type
* @return: 0 on success, or negative error code on failure
*/
static int pinctrl_generic_set_state_one(struct udevice *dev,
struct udevice *config,
bool is_group, unsigned selector)
enum pinmux_subnode_type subnode_type,
unsigned selector)
{
const char *propname;
const void *value;
@ -248,17 +257,22 @@ static int pinctrl_generic_set_state_one(struct udevice *dev,
int len, func_selector, param, ret;
u32 arg, default_val;
assert(subnode_type != PST_NONE);
dev_for_each_property(property, config) {
value = dev_read_prop_by_prop(&property, &propname, &len);
if (!value)
return -EINVAL;
if (!strcmp(propname, "function")) {
/* pinmux subnodes already have their muxing set */
if (subnode_type != PST_PINMUX &&
!strcmp(propname, "function")) {
func_selector = pinmux_func_name_to_selector(dev,
value);
if (func_selector < 0)
return func_selector;
ret = pinmux_enable_setting(dev, is_group,
ret = pinmux_enable_setting(dev,
subnode_type == PST_GROUP,
selector,
func_selector);
} else {
@ -272,7 +286,8 @@ static int pinctrl_generic_set_state_one(struct udevice *dev,
else
arg = default_val;
ret = pinconf_enable_setting(dev, is_group,
ret = pinconf_enable_setting(dev,
subnode_type == PST_GROUP,
selector, param, arg);
}
@ -283,6 +298,41 @@ static int pinctrl_generic_set_state_one(struct udevice *dev,
return 0;
}
/**
* pinctrl_generic_get_subnode_type() - determine whether there is a valid
* pins, groups, or pinmux property in the config node
*
* @dev: pin controller device
* @config: pseudo device pointing to config node
* @count: number of specifiers contained within the property
* @return: the type of the subnode, or PST_NONE
*/
static enum pinmux_subnode_type pinctrl_generic_get_subnode_type(struct udevice *dev,
struct udevice *config,
int *count)
{
const struct pinctrl_ops *ops = pinctrl_get_ops(dev);
*count = dev_read_string_count(config, "pins");
if (*count >= 0)
return PST_PIN;
*count = dev_read_string_count(config, "groups");
if (*count >= 0)
return PST_GROUP;
if (ops->pinmux_property_set) {
*count = dev_read_size(config, "pinmux");
if (*count >= 0 && !(*count % sizeof(u32))) {
*count /= sizeof(u32);
return PST_PINMUX;
}
}
*count = 0;
return PST_NONE;
}
/**
* pinctrl_generic_set_state_subnode() - apply all settings in config node
*
@ -293,38 +343,55 @@ static int pinctrl_generic_set_state_one(struct udevice *dev,
static int pinctrl_generic_set_state_subnode(struct udevice *dev,
struct udevice *config)
{
const char *subnode_target_type = "pins";
bool is_group = false;
enum pinmux_subnode_type subnode_type;
const char *name;
int strings_count, selector, i, ret;
int count, selector, i, ret, scratch;
const u32 *pinmux_groups = NULL; /* prevent use-uninitialized warning */
strings_count = dev_read_string_count(config, subnode_target_type);
if (strings_count < 0) {
subnode_target_type = "groups";
is_group = true;
strings_count = dev_read_string_count(config,
subnode_target_type);
if (strings_count < 0) {
subnode_type = pinctrl_generic_get_subnode_type(dev, config, &count);
debug("%s(%s, %s): count=%d\n", __func__, dev->name, config->name,
count);
if (subnode_type == PST_PINMUX) {
pinmux_groups = dev_read_prop(config, "pinmux", &scratch);
if (!pinmux_groups)
return -EINVAL;
}
for (i = 0; i < count; i++) {
switch (subnode_type) {
case PST_PIN:
ret = dev_read_string_index(config, "pins", i, &name);
if (ret)
return ret;
selector = pinctrl_pin_name_to_selector(dev, name);
break;
case PST_GROUP:
ret = dev_read_string_index(config, "groups", i, &name);
if (ret)
return ret;
selector = pinctrl_group_name_to_selector(dev, name);
break;
case PST_PINMUX: {
const struct pinctrl_ops *ops = pinctrl_get_ops(dev);
u32 pinmux_group = fdt32_to_cpu(pinmux_groups[i]);
/* Checked for in pinctrl_generic_get_subnode_type */
selector = ops->pinmux_property_set(dev, pinmux_group);
break;
}
case PST_NONE:
default:
/* skip this node; may contain config child nodes */
return 0;
}
}
for (i = 0; i < strings_count; i++) {
ret = dev_read_string_index(config, subnode_target_type, i,
&name);
if (ret)
return ret;
if (is_group)
selector = pinctrl_group_name_to_selector(dev, name);
else
selector = pinctrl_pin_name_to_selector(dev, name);
if (selector < 0)
return selector;
ret = pinctrl_generic_set_state_one(dev, config,
is_group, selector);
ret = pinctrl_generic_set_state_one(dev, config, subnode_type,
selector);
if (ret)
return ret;
}

View file

@ -0,0 +1,737 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2020 Sean Anderson <seanga2@gmail.com>
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <dm/pinctrl.h>
#include <dt-bindings/pinctrl/k210-pinctrl.h>
#include <mapmem.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/io.h>
#include <linux/err.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
/*
* The K210 only implements 8 drive levels, even though there is register space
* for 16
*/
#define K210_PC_DRIVE_MASK GENMASK(11, 8)
#define K210_PC_DRIVE_SHIFT 8
#define K210_PC_DRIVE_0 (0 << K210_PC_DRIVE_SHIFT)
#define K210_PC_DRIVE_1 (1 << K210_PC_DRIVE_SHIFT)
#define K210_PC_DRIVE_2 (2 << K210_PC_DRIVE_SHIFT)
#define K210_PC_DRIVE_3 (3 << K210_PC_DRIVE_SHIFT)
#define K210_PC_DRIVE_4 (4 << K210_PC_DRIVE_SHIFT)
#define K210_PC_DRIVE_5 (5 << K210_PC_DRIVE_SHIFT)
#define K210_PC_DRIVE_6 (6 << K210_PC_DRIVE_SHIFT)
#define K210_PC_DRIVE_7 (7 << K210_PC_DRIVE_SHIFT)
#define K210_PC_DRIVE_MAX 7
#define K210_PC_MODE_MASK GENMASK(23, 12)
/*
* output enabled == PC_OE & (PC_OE_INV ^ FUNCTION_OE) where FUNCTION_OE is a
* physical signal from the function
*/
#define K210_PC_OE BIT(12) /* Output Enable */
#define K210_PC_OE_INV BIT(13) /* INVert function-controlled Output Enable */
#define K210_PC_DO_OE BIT(14) /* set Data Out to the Output Enable signal */
#define K210_PC_DO_INV BIT(15) /* INVert final Data Output */
#define K210_PC_PU BIT(16) /* Pull Up */
#define K210_PC_PD BIT(17) /* Pull Down */
/* Strong pull up not implemented on K210 */
#define K210_PC_SL BIT(19) /* reduce SLew rate to prevent overshoot */
/* Same semantics as OE above */
#define K210_PC_IE BIT(20) /* Input Enable */
#define K210_PC_IE_INV BIT(21) /* INVert function-controlled Input Enable */
#define K210_PC_DI_INV BIT(22) /* INVert Data Input */
#define K210_PC_ST BIT(23) /* Schmitt Trigger */
#define K210_PC_DI BIT(31) /* raw Data Input */
#define K210_PC_BIAS_MASK (K210_PC_PU & K210_PC_PD)
#define K210_PC_MODE_IN (K210_PC_IE | K210_PC_ST)
#define K210_PC_MODE_OUT (K210_PC_DRIVE_7 | K210_PC_OE)
#define K210_PC_MODE_I2C (K210_PC_MODE_IN | K210_PC_IE_INV | K210_PC_SL | \
K210_PC_OE | K210_PC_OE_INV | K210_PC_PU)
#define K210_PC_MODE_SPI (K210_PC_MODE_IN | K210_PC_IE_INV | \
K210_PC_MODE_OUT | K210_PC_OE_INV)
#define K210_PC_MODE_GPIO (K210_PC_MODE_IN | K210_PC_MODE_OUT)
#define K210_PG_FUNC GENMASK(7, 0)
#define K210_PG_DO BIT(8)
#define K210_PG_PIN GENMASK(22, 16)
#define PIN_CONFIG_OUTPUT_INVERT (PIN_CONFIG_END + 1)
#define PIN_CONFIG_INPUT_INVERT (PIN_CONFIG_END + 2)
struct k210_fpioa {
u32 pins[48];
u32 tie_en[8];
u32 tie_val[8];
};
struct k210_pc_priv {
struct clk clk;
struct k210_fpioa __iomem *fpioa; /* FPIOA register */
struct regmap *sysctl; /* Sysctl regmap */
u32 power_offset; /* Power bank register offset */
};
#ifdef CONFIG_CMD_PINMUX
static const char k210_pc_pin_names[][6] = {
#define PIN(i) \
[i] = "IO_" #i
PIN(0),
PIN(1),
PIN(2),
PIN(3),
PIN(4),
PIN(5),
PIN(6),
PIN(7),
PIN(8),
PIN(9),
PIN(10),
PIN(11),
PIN(12),
PIN(13),
PIN(14),
PIN(15),
PIN(16),
PIN(17),
PIN(18),
PIN(19),
PIN(20),
PIN(21),
PIN(22),
PIN(23),
PIN(24),
PIN(25),
PIN(26),
PIN(27),
PIN(28),
PIN(29),
PIN(30),
PIN(31),
PIN(32),
PIN(33),
PIN(34),
PIN(35),
PIN(36),
PIN(37),
PIN(38),
PIN(39),
PIN(40),
PIN(41),
PIN(42),
PIN(43),
PIN(44),
PIN(45),
PIN(46),
PIN(47),
#undef PIN
};
static int k210_pc_get_pins_count(struct udevice *dev)
{
return ARRAY_SIZE(k210_pc_pin_names);
};
static const char *k210_pc_get_pin_name(struct udevice *dev, unsigned selector)
{
return k210_pc_pin_names[selector];
}
#endif /* CONFIG_CMD_PINMUX */
/* These are just power domains */
static const char k210_pc_group_names[][3] = {
[0] = "A0",
[1] = "A1",
[2] = "A2",
[3] = "B0",
[4] = "B1",
[5] = "B2",
[6] = "C0",
[7] = "C1",
};
static int k210_pc_get_groups_count(struct udevice *dev)
{
return ARRAY_SIZE(k210_pc_group_names);
}
static const char *k210_pc_get_group_name(struct udevice *dev,
unsigned selector)
{
return k210_pc_group_names[selector];
}
enum k210_pc_mode_id {
K210_PC_DEFAULT_DISABLED,
K210_PC_DEFAULT_IN,
K210_PC_DEFAULT_IN_TIE,
K210_PC_DEFAULT_OUT,
K210_PC_DEFAULT_I2C,
K210_PC_DEFAULT_SPI,
K210_PC_DEFAULT_GPIO,
K210_PC_DEFAULT_INT13,
};
static const u32 k210_pc_mode_id_to_mode[] = {
#define DEFAULT(mode) \
[K210_PC_DEFAULT_##mode] = K210_PC_MODE_##mode
[K210_PC_DEFAULT_DISABLED] = 0,
DEFAULT(IN),
[K210_PC_DEFAULT_IN_TIE] = K210_PC_MODE_IN,
DEFAULT(OUT),
DEFAULT(I2C),
DEFAULT(SPI),
DEFAULT(GPIO),
[K210_PC_DEFAULT_INT13] = K210_PC_MODE_IN | K210_PC_PU,
#undef DEFAULT
};
/* This saves around 2K vs having a pointer+mode */
struct k210_pcf_info {
#ifdef CONFIG_CMD_PINMUX
char name[15];
#endif
u8 mode_id;
};
static const struct k210_pcf_info k210_pcf_infos[] = {
#ifdef CONFIG_CMD_PINMUX
#define FUNC(id, mode) \
[K210_PCF_##id] = { \
.name = #id, \
.mode_id = K210_PC_DEFAULT_##mode \
}
#else
#define FUNC(id, mode) \
[K210_PCF_##id] = { \
.mode_id = K210_PC_DEFAULT_##mode \
}
#endif
FUNC(JTAG_TCLK, IN),
FUNC(JTAG_TDI, IN),
FUNC(JTAG_TMS, IN),
FUNC(JTAG_TDO, OUT),
FUNC(SPI0_D0, SPI),
FUNC(SPI0_D1, SPI),
FUNC(SPI0_D2, SPI),
FUNC(SPI0_D3, SPI),
FUNC(SPI0_D4, SPI),
FUNC(SPI0_D5, SPI),
FUNC(SPI0_D6, SPI),
FUNC(SPI0_D7, SPI),
FUNC(SPI0_SS0, OUT),
FUNC(SPI0_SS1, OUT),
FUNC(SPI0_SS2, OUT),
FUNC(SPI0_SS3, OUT),
FUNC(SPI0_ARB, IN_TIE),
FUNC(SPI0_SCLK, OUT),
FUNC(UARTHS_RX, IN),
FUNC(UARTHS_TX, OUT),
FUNC(RESV6, IN),
FUNC(RESV7, IN),
FUNC(CLK_SPI1, OUT),
FUNC(CLK_I2C1, OUT),
FUNC(GPIOHS0, GPIO),
FUNC(GPIOHS1, GPIO),
FUNC(GPIOHS2, GPIO),
FUNC(GPIOHS3, GPIO),
FUNC(GPIOHS4, GPIO),
FUNC(GPIOHS5, GPIO),
FUNC(GPIOHS6, GPIO),
FUNC(GPIOHS7, GPIO),
FUNC(GPIOHS8, GPIO),
FUNC(GPIOHS9, GPIO),
FUNC(GPIOHS10, GPIO),
FUNC(GPIOHS11, GPIO),
FUNC(GPIOHS12, GPIO),
FUNC(GPIOHS13, GPIO),
FUNC(GPIOHS14, GPIO),
FUNC(GPIOHS15, GPIO),
FUNC(GPIOHS16, GPIO),
FUNC(GPIOHS17, GPIO),
FUNC(GPIOHS18, GPIO),
FUNC(GPIOHS19, GPIO),
FUNC(GPIOHS20, GPIO),
FUNC(GPIOHS21, GPIO),
FUNC(GPIOHS22, GPIO),
FUNC(GPIOHS23, GPIO),
FUNC(GPIOHS24, GPIO),
FUNC(GPIOHS25, GPIO),
FUNC(GPIOHS26, GPIO),
FUNC(GPIOHS27, GPIO),
FUNC(GPIOHS28, GPIO),
FUNC(GPIOHS29, GPIO),
FUNC(GPIOHS30, GPIO),
FUNC(GPIOHS31, GPIO),
FUNC(GPIO0, GPIO),
FUNC(GPIO1, GPIO),
FUNC(GPIO2, GPIO),
FUNC(GPIO3, GPIO),
FUNC(GPIO4, GPIO),
FUNC(GPIO5, GPIO),
FUNC(GPIO6, GPIO),
FUNC(GPIO7, GPIO),
FUNC(UART1_RX, IN),
FUNC(UART1_TX, OUT),
FUNC(UART2_RX, IN),
FUNC(UART2_TX, OUT),
FUNC(UART3_RX, IN),
FUNC(UART3_TX, OUT),
FUNC(SPI1_D0, SPI),
FUNC(SPI1_D1, SPI),
FUNC(SPI1_D2, SPI),
FUNC(SPI1_D3, SPI),
FUNC(SPI1_D4, SPI),
FUNC(SPI1_D5, SPI),
FUNC(SPI1_D6, SPI),
FUNC(SPI1_D7, SPI),
FUNC(SPI1_SS0, OUT),
FUNC(SPI1_SS1, OUT),
FUNC(SPI1_SS2, OUT),
FUNC(SPI1_SS3, OUT),
FUNC(SPI1_ARB, IN_TIE),
FUNC(SPI1_SCLK, OUT),
FUNC(SPI2_D0, SPI),
FUNC(SPI2_SS, IN),
FUNC(SPI2_SCLK, IN),
FUNC(I2S0_MCLK, OUT),
FUNC(I2S0_SCLK, OUT),
FUNC(I2S0_WS, OUT),
FUNC(I2S0_IN_D0, IN),
FUNC(I2S0_IN_D1, IN),
FUNC(I2S0_IN_D2, IN),
FUNC(I2S0_IN_D3, IN),
FUNC(I2S0_OUT_D0, OUT),
FUNC(I2S0_OUT_D1, OUT),
FUNC(I2S0_OUT_D2, OUT),
FUNC(I2S0_OUT_D3, OUT),
FUNC(I2S1_MCLK, OUT),
FUNC(I2S1_SCLK, OUT),
FUNC(I2S1_WS, OUT),
FUNC(I2S1_IN_D0, IN),
FUNC(I2S1_IN_D1, IN),
FUNC(I2S1_IN_D2, IN),
FUNC(I2S1_IN_D3, IN),
FUNC(I2S1_OUT_D0, OUT),
FUNC(I2S1_OUT_D1, OUT),
FUNC(I2S1_OUT_D2, OUT),
FUNC(I2S1_OUT_D3, OUT),
FUNC(I2S2_MCLK, OUT),
FUNC(I2S2_SCLK, OUT),
FUNC(I2S2_WS, OUT),
FUNC(I2S2_IN_D0, IN),
FUNC(I2S2_IN_D1, IN),
FUNC(I2S2_IN_D2, IN),
FUNC(I2S2_IN_D3, IN),
FUNC(I2S2_OUT_D0, OUT),
FUNC(I2S2_OUT_D1, OUT),
FUNC(I2S2_OUT_D2, OUT),
FUNC(I2S2_OUT_D3, OUT),
FUNC(RESV0, DISABLED),
FUNC(RESV1, DISABLED),
FUNC(RESV2, DISABLED),
FUNC(RESV3, DISABLED),
FUNC(RESV4, DISABLED),
FUNC(RESV5, DISABLED),
FUNC(I2C0_SCLK, I2C),
FUNC(I2C0_SDA, I2C),
FUNC(I2C1_SCLK, I2C),
FUNC(I2C1_SDA, I2C),
FUNC(I2C2_SCLK, I2C),
FUNC(I2C2_SDA, I2C),
FUNC(DVP_XCLK, OUT),
FUNC(DVP_RST, OUT),
FUNC(DVP_PWDN, OUT),
FUNC(DVP_VSYNC, IN),
FUNC(DVP_HSYNC, IN),
FUNC(DVP_PCLK, IN),
FUNC(DVP_D0, IN),
FUNC(DVP_D1, IN),
FUNC(DVP_D2, IN),
FUNC(DVP_D3, IN),
FUNC(DVP_D4, IN),
FUNC(DVP_D5, IN),
FUNC(DVP_D6, IN),
FUNC(DVP_D7, IN),
FUNC(SCCB_SCLK, I2C),
FUNC(SCCB_SDA, I2C),
FUNC(UART1_CTS, IN),
FUNC(UART1_DSR, IN),
FUNC(UART1_DCD, IN),
FUNC(UART1_RI, IN),
FUNC(UART1_SIR_IN, IN),
FUNC(UART1_DTR, OUT),
FUNC(UART1_RTS, OUT),
FUNC(UART1_OUT2, OUT),
FUNC(UART1_OUT1, OUT),
FUNC(UART1_SIR_OUT, OUT),
FUNC(UART1_BAUD, OUT),
FUNC(UART1_RE, OUT),
FUNC(UART1_DE, OUT),
FUNC(UART1_RS485_EN, OUT),
FUNC(UART2_CTS, IN),
FUNC(UART2_DSR, IN),
FUNC(UART2_DCD, IN),
FUNC(UART2_RI, IN),
FUNC(UART2_SIR_IN, IN),
FUNC(UART2_DTR, OUT),
FUNC(UART2_RTS, OUT),
FUNC(UART2_OUT2, OUT),
FUNC(UART2_OUT1, OUT),
FUNC(UART2_SIR_OUT, OUT),
FUNC(UART2_BAUD, OUT),
FUNC(UART2_RE, OUT),
FUNC(UART2_DE, OUT),
FUNC(UART2_RS485_EN, OUT),
FUNC(UART3_CTS, IN),
FUNC(UART3_DSR, IN),
FUNC(UART3_DCD, IN),
FUNC(UART3_RI, IN),
FUNC(UART3_SIR_IN, IN),
FUNC(UART3_DTR, OUT),
FUNC(UART3_RTS, OUT),
FUNC(UART3_OUT2, OUT),
FUNC(UART3_OUT1, OUT),
FUNC(UART3_SIR_OUT, OUT),
FUNC(UART3_BAUD, OUT),
FUNC(UART3_RE, OUT),
FUNC(UART3_DE, OUT),
FUNC(UART3_RS485_EN, OUT),
FUNC(TIMER0_TOGGLE1, OUT),
FUNC(TIMER0_TOGGLE2, OUT),
FUNC(TIMER0_TOGGLE3, OUT),
FUNC(TIMER0_TOGGLE4, OUT),
FUNC(TIMER1_TOGGLE1, OUT),
FUNC(TIMER1_TOGGLE2, OUT),
FUNC(TIMER1_TOGGLE3, OUT),
FUNC(TIMER1_TOGGLE4, OUT),
FUNC(TIMER2_TOGGLE1, OUT),
FUNC(TIMER2_TOGGLE2, OUT),
FUNC(TIMER2_TOGGLE3, OUT),
FUNC(TIMER2_TOGGLE4, OUT),
FUNC(CLK_SPI2, OUT),
FUNC(CLK_I2C2, OUT),
FUNC(INTERNAL0, OUT),
FUNC(INTERNAL1, OUT),
FUNC(INTERNAL2, OUT),
FUNC(INTERNAL3, OUT),
FUNC(INTERNAL4, OUT),
FUNC(INTERNAL5, OUT),
FUNC(INTERNAL6, OUT),
FUNC(INTERNAL7, OUT),
FUNC(INTERNAL8, OUT),
FUNC(INTERNAL9, IN),
FUNC(INTERNAL10, IN),
FUNC(INTERNAL11, IN),
FUNC(INTERNAL12, IN),
FUNC(INTERNAL13, INT13),
FUNC(INTERNAL14, I2C),
FUNC(INTERNAL15, IN),
FUNC(INTERNAL16, IN),
FUNC(INTERNAL17, IN),
FUNC(CONSTANT, DISABLED),
FUNC(INTERNAL18, IN),
FUNC(DEBUG0, OUT),
FUNC(DEBUG1, OUT),
FUNC(DEBUG2, OUT),
FUNC(DEBUG3, OUT),
FUNC(DEBUG4, OUT),
FUNC(DEBUG5, OUT),
FUNC(DEBUG6, OUT),
FUNC(DEBUG7, OUT),
FUNC(DEBUG8, OUT),
FUNC(DEBUG9, OUT),
FUNC(DEBUG10, OUT),
FUNC(DEBUG11, OUT),
FUNC(DEBUG12, OUT),
FUNC(DEBUG13, OUT),
FUNC(DEBUG14, OUT),
FUNC(DEBUG15, OUT),
FUNC(DEBUG16, OUT),
FUNC(DEBUG17, OUT),
FUNC(DEBUG18, OUT),
FUNC(DEBUG19, OUT),
FUNC(DEBUG20, OUT),
FUNC(DEBUG21, OUT),
FUNC(DEBUG22, OUT),
FUNC(DEBUG23, OUT),
FUNC(DEBUG24, OUT),
FUNC(DEBUG25, OUT),
FUNC(DEBUG26, OUT),
FUNC(DEBUG27, OUT),
FUNC(DEBUG28, OUT),
FUNC(DEBUG29, OUT),
FUNC(DEBUG30, OUT),
FUNC(DEBUG31, OUT),
#undef FUNC
};
static int k210_pc_pinmux_set(struct udevice *dev, u32 pinmux_group)
{
unsigned pin = FIELD_GET(K210_PG_PIN, pinmux_group);
bool do_oe = FIELD_GET(K210_PG_DO, pinmux_group);
unsigned func = FIELD_GET(K210_PG_FUNC, pinmux_group);
struct k210_pc_priv *priv = dev_get_priv(dev);
const struct k210_pcf_info *info = &k210_pcf_infos[func];
u32 mode = k210_pc_mode_id_to_mode[info->mode_id];
u32 val = func | mode | (do_oe ? K210_PC_DO_OE : 0);
debug("%s(%.8x): IO_%.2u = %3u | %.8x\n", __func__, pinmux_group, pin,
func, mode);
writel(val, &priv->fpioa->pins[pin]);
return pin;
}
/* Max drive strength in uA */
static const int k210_pc_drive_strength[] = {
[0] = 11200,
[1] = 16800,
[2] = 22300,
[3] = 27800,
[4] = 33300,
[5] = 38700,
[6] = 44100,
[7] = 49500,
};
static int k210_pc_get_drive(unsigned max_strength_ua)
{
int i;
for (i = K210_PC_DRIVE_MAX; i; i--)
if (k210_pc_drive_strength[i] < max_strength_ua)
return i;
return -EINVAL;
}
static int k210_pc_pinconf_set(struct udevice *dev, unsigned pin_selector,
unsigned param, unsigned argument)
{
struct k210_pc_priv *priv = dev_get_priv(dev);
u32 val = readl(&priv->fpioa->pins[pin_selector]);
switch (param) {
case PIN_CONFIG_BIAS_DISABLE:
val &= ~K210_PC_BIAS_MASK;
break;
case PIN_CONFIG_BIAS_PULL_DOWN:
if (argument)
val |= K210_PC_PD;
else
return -EINVAL;
break;
case PIN_CONFIG_BIAS_PULL_UP:
if (argument)
val |= K210_PC_PD;
else
return -EINVAL;
break;
case PIN_CONFIG_DRIVE_STRENGTH:
argument *= 1000;
case PIN_CONFIG_DRIVE_STRENGTH_UA: {
int drive = k210_pc_get_drive(argument);
if (IS_ERR_VALUE(drive))
return drive;
val &= ~K210_PC_DRIVE_MASK;
val |= FIELD_PREP(K210_PC_DRIVE_MASK, drive);
break;
}
case PIN_CONFIG_INPUT_ENABLE:
if (argument)
val |= K210_PC_IE;
else
val &= ~K210_PC_IE;
break;
case PIN_CONFIG_INPUT_SCHMITT:
argument = 1;
case PIN_CONFIG_INPUT_SCHMITT_ENABLE:
if (argument)
val |= K210_PC_ST;
else
val &= ~K210_PC_ST;
break;
case PIN_CONFIG_OUTPUT:
k210_pc_pinmux_set(dev,
K210_FPIOA(pin_selector, K210_PCF_CONSTANT));
val = readl(&priv->fpioa->pins[pin_selector]);
val |= K210_PC_MODE_OUT;
if (!argument)
val |= K210_PC_DO_INV;
break;
case PIN_CONFIG_OUTPUT_ENABLE:
if (argument)
val |= K210_PC_OE;
else
val &= ~K210_PC_OE;
break;
case PIN_CONFIG_SLEW_RATE:
if (argument)
val |= K210_PC_SL;
else
val &= ~K210_PC_SL;
break;
case PIN_CONFIG_OUTPUT_INVERT:
if (argument)
val |= K210_PC_DO_INV;
else
val &= ~K210_PC_DO_INV;
break;
case PIN_CONFIG_INPUT_INVERT:
if (argument)
val |= K210_PC_DI_INV;
else
val &= ~K210_PC_DI_INV;
break;
default:
return -EINVAL;
}
writel(val, &priv->fpioa->pins[pin_selector]);
return 0;
}
static int k210_pc_pinconf_group_set(struct udevice *dev,
unsigned group_selector, unsigned param,
unsigned argument)
{
struct k210_pc_priv *priv = dev_get_priv(dev);
if (param == PIN_CONFIG_POWER_SOURCE) {
u32 bit = BIT(group_selector);
regmap_update_bits(priv->sysctl, priv->power_offset, bit,
argument ? bit : 0);
} else {
return -EINVAL;
}
return 0;
}
#ifdef CONFIG_CMD_PINMUX
static int k210_pc_get_pin_muxing(struct udevice *dev, unsigned int selector,
char *buf, int size)
{
struct k210_pc_priv *priv = dev_get_priv(dev);
u32 val = readl(&priv->fpioa->pins[selector]);
const struct k210_pcf_info *info = &k210_pcf_infos[val & K210_PCF_MASK];
strncpy(buf, info->name, min((size_t)size, sizeof(info->name)));
return 0;
}
#endif
static const struct pinconf_param k210_pc_pinconf_params[] = {
{ "bias-disable", PIN_CONFIG_BIAS_DISABLE, 0 },
{ "bias-pull-down", PIN_CONFIG_BIAS_PULL_DOWN, 1 },
{ "bias-pull-up", PIN_CONFIG_BIAS_PULL_UP, 1 },
{ "drive-strength", PIN_CONFIG_DRIVE_STRENGTH, U32_MAX },
{ "drive-strength-ua", PIN_CONFIG_DRIVE_STRENGTH_UA, U32_MAX },
{ "input-enable", PIN_CONFIG_INPUT_ENABLE, 1 },
{ "input-disable", PIN_CONFIG_INPUT_ENABLE, 0 },
{ "input-schmitt-enable", PIN_CONFIG_INPUT_SCHMITT_ENABLE, 1 },
{ "input-schmitt-disable", PIN_CONFIG_INPUT_SCHMITT_ENABLE, 0 },
{ "power-source", PIN_CONFIG_POWER_SOURCE, K210_PC_POWER_1V8 },
{ "output-low", PIN_CONFIG_OUTPUT, 0 },
{ "output-high", PIN_CONFIG_OUTPUT, 1 },
{ "output-enable", PIN_CONFIG_OUTPUT_ENABLE, 1 },
{ "output-disable", PIN_CONFIG_OUTPUT_ENABLE, 0 },
{ "slew-rate", PIN_CONFIG_SLEW_RATE, 1 },
{ "output-polarity-invert", PIN_CONFIG_OUTPUT_INVERT, 1},
{ "input-polarity-invert", PIN_CONFIG_INPUT_INVERT, 1},
};
static const struct pinctrl_ops k210_pc_pinctrl_ops = {
#ifdef CONFIG_CMD_PINMUX
.get_pins_count = k210_pc_get_pins_count,
.get_pin_name = k210_pc_get_pin_name,
#endif
.get_groups_count = k210_pc_get_groups_count,
.get_group_name = k210_pc_get_group_name,
.pinmux_property_set = k210_pc_pinmux_set,
.pinconf_num_params = ARRAY_SIZE(k210_pc_pinconf_params),
.pinconf_params = k210_pc_pinconf_params,
.pinconf_set = k210_pc_pinconf_set,
.pinconf_group_set = k210_pc_pinconf_group_set,
.set_state = pinctrl_generic_set_state,
#ifdef CONFIG_CMD_PINMUX
.get_pin_muxing = k210_pc_get_pin_muxing,
#endif
};
static int k210_pc_probe(struct udevice *dev)
{
int ret, i, j;
struct k210_pc_priv *priv = dev_get_priv(dev);
priv->fpioa = dev_read_addr_ptr(dev);
if (!priv->fpioa)
return -EINVAL;
ret = clk_get_by_index(dev, 0, &priv->clk);
if (ret)
return ret;
ret = clk_enable(&priv->clk);
if (ret && ret != -ENOSYS && ret != -ENOTSUPP)
goto err;
priv->sysctl = syscon_regmap_lookup_by_phandle(dev, "kendryte,sysctl");
if (IS_ERR(priv->sysctl)) {
ret = -ENODEV;
goto err;
}
ret = dev_read_u32(dev, "kendryte,power-offset", &priv->power_offset);
if (ret)
goto err;
debug("%s: fpioa = %p sysctl = %p power offset = %x\n", __func__,
priv->fpioa, (void *)priv->sysctl->ranges[0].start,
priv->power_offset);
/* Init input ties */
for (i = 0; i < ARRAY_SIZE(priv->fpioa->tie_en); i++) {
u32 val = 0;
for (j = 0; j < 32; j++)
if (k210_pcf_infos[i * 32 + j].mode_id ==
K210_PC_DEFAULT_IN_TIE)
val |= BIT(j);
writel(val, &priv->fpioa->tie_en[i]);
writel(val, &priv->fpioa->tie_val[i]);
}
return 0;
err:
clk_free(&priv->clk);
return ret;
}
static const struct udevice_id k210_pc_ids[] = {
{ .compatible = "kendryte,k210-fpioa" },
{ }
};
U_BOOT_DRIVER(pinctrl_k210) = {
.name = "pinctrl_k210",
.id = UCLASS_PINCTRL,
.of_match = k210_pc_ids,
.probe = k210_pc_probe,
.priv_auto_alloc_size = sizeof(struct k210_pc_priv),
.ops = &k210_pc_pinctrl_ops,
};

View file

@ -1,57 +1,70 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2015 Masahiro Yamada <yamada.masahiro@socionext.com>
* Copyright (C) 2020 Sean Anderson <seanga2@gmail.com>
* Copyright (C) 2015 Masahiro Yamada <yamada.masahiro@socionext.com>
*/
/* #define DEBUG */
#include <common.h>
#include <dm.h>
#include <log.h>
#include <dm/pinctrl.h>
#include <dt-bindings/pinctrl/sandbox-pinmux.h>
#include <log.h>
#include <linux/bitops.h>
/*
* This driver emulates a pin controller with the following rules:
* - The pinctrl config for each pin must be set individually
* - The first three pins (P0-P2) must be muxed as a group
* - The next two pins (P3-P4) must be muxed as a group
* - The last four pins (P5-P8) must be muxed individually
*/
static const char * const sandbox_pins[] = {
"SCL",
"SDA",
"TX",
"RX",
"W1",
"GPIO0",
"GPIO1",
"GPIO2",
"GPIO3",
#define PIN(x) \
[x] = "P" #x
PIN(0),
PIN(1),
PIN(2),
PIN(3),
PIN(4),
PIN(5),
PIN(6),
PIN(7),
PIN(8),
#undef PIN
};
static const char * const sandbox_pins_muxing[] = {
"I2C SCL",
"I2C SDA",
"Uart TX",
"Uart RX",
"1-wire gpio",
"gpio",
"gpio",
"gpio",
"gpio",
static const char * const sandbox_pins_muxing[][2] = {
{ "UART TX", "I2C SCL" },
{ "UART RX", "I2C SDA" },
{ "SPI SCLK", "I2S SCK" },
{ "SPI MOSI", "I2S SD" },
{ "SPI MISO", "I2S WS" },
{ "GPIO0", "SPI CS0" },
{ "GPIO1", "SPI CS1" },
{ "GPIO2", "PWM0" },
{ "GPIO3", "PWM1" },
};
#define SANDBOX_GROUP_I2C_UART 0
#define SANDBOX_GROUP_SPI_I2S 1
static const char * const sandbox_groups[] = {
"i2c",
"serial_a",
"serial_b",
"spi",
"w1",
[SANDBOX_GROUP_I2C_UART] = "I2C_UART",
[SANDBOX_GROUP_SPI_I2S] = "SPI_I2S",
};
static const char * const sandbox_functions[] = {
"i2c",
"serial",
"spi",
"w1",
"gpio",
"gpio",
"gpio",
"gpio",
#define FUNC(id) \
[SANDBOX_PINMUX_##id] = #id
FUNC(UART),
FUNC(I2C),
FUNC(SPI),
FUNC(I2S),
FUNC(GPIO),
FUNC(CS),
FUNC(PWM),
#undef FUNC
};
static const struct pinconf_param sandbox_conf_params[] = {
@ -68,9 +81,12 @@ static const struct pinconf_param sandbox_conf_params[] = {
{ "input-disable", PIN_CONFIG_INPUT_ENABLE, 0 },
};
/* bitfield used to save param and value of each pin/selector */
static unsigned int sandbox_pins_param[ARRAY_SIZE(sandbox_pins)];
static unsigned int sandbox_pins_value[ARRAY_SIZE(sandbox_pins)];
/* Bitfield used to save param and value of each pin/selector */
struct sandbox_pinctrl_priv {
unsigned int mux;
unsigned int pins_param[ARRAY_SIZE(sandbox_pins)];
unsigned int pins_value[ARRAY_SIZE(sandbox_pins)];
};
static int sandbox_get_pins_count(struct udevice *dev)
{
@ -87,16 +103,18 @@ static int sandbox_get_pin_muxing(struct udevice *dev,
char *buf, int size)
{
const struct pinconf_param *p;
struct sandbox_pinctrl_priv *priv = dev_get_priv(dev);
int i;
snprintf(buf, size, "%s", sandbox_pins_muxing[selector]);
snprintf(buf, size, "%s",
sandbox_pins_muxing[selector][!!(priv->mux & BIT(selector))]);
if (sandbox_pins_param[selector]) {
if (priv->pins_param[selector]) {
for (i = 0, p = sandbox_conf_params;
i < ARRAY_SIZE(sandbox_conf_params);
i++, p++) {
if ((sandbox_pins_param[selector] & BIT(p->param)) &&
(!!(sandbox_pins_value[selector] & BIT(p->param)) ==
if ((priv->pins_param[selector] & BIT(p->param)) &&
(!!(priv->pins_value[selector] & BIT(p->param)) ==
p->default_value)) {
strncat(buf, " ", size);
strncat(buf, p->property, size);
@ -133,12 +151,32 @@ static const char *sandbox_get_function_name(struct udevice *dev,
static int sandbox_pinmux_set(struct udevice *dev, unsigned pin_selector,
unsigned func_selector)
{
int mux;
struct sandbox_pinctrl_priv *priv = dev_get_priv(dev);
debug("sandbox pinmux: pin = %d (%s), function = %d (%s)\n",
pin_selector, sandbox_get_pin_name(dev, pin_selector),
func_selector, sandbox_get_function_name(dev, func_selector));
sandbox_pins_param[pin_selector] = 0;
sandbox_pins_value[pin_selector] = 0;
if (pin_selector < 5)
return -EINVAL;
switch (func_selector) {
case SANDBOX_PINMUX_GPIO:
mux = 0;
break;
case SANDBOX_PINMUX_CS:
case SANDBOX_PINMUX_PWM:
mux = BIT(pin_selector);
break;
default:
return -EINVAL;
}
priv->mux &= ~BIT(pin_selector);
priv->mux |= mux;
priv->pins_param[pin_selector] = 0;
priv->pins_value[pin_selector] = 0;
return 0;
}
@ -147,25 +185,75 @@ static int sandbox_pinmux_group_set(struct udevice *dev,
unsigned group_selector,
unsigned func_selector)
{
bool mux;
int i, group_start, group_end;
struct sandbox_pinctrl_priv *priv = dev_get_priv(dev);
unsigned int mask;
debug("sandbox pinmux: group = %d (%s), function = %d (%s)\n",
group_selector, sandbox_get_group_name(dev, group_selector),
func_selector, sandbox_get_function_name(dev, func_selector));
if (group_selector == SANDBOX_GROUP_I2C_UART) {
group_start = 0;
group_end = 1;
if (func_selector == SANDBOX_PINMUX_UART)
mux = false;
else if (func_selector == SANDBOX_PINMUX_I2C)
mux = true;
else
return -EINVAL;
} else if (group_selector == SANDBOX_GROUP_SPI_I2S) {
group_start = 2;
group_end = 4;
if (func_selector == SANDBOX_PINMUX_SPI)
mux = false;
else if (func_selector == SANDBOX_PINMUX_I2S)
mux = true;
else
return -EINVAL;
} else {
return -EINVAL;
}
mask = GENMASK(group_end, group_start);
priv->mux &= ~mask;
priv->mux |= mux ? mask : 0;
for (i = group_start; i < group_end; i++) {
priv->pins_param[i] = 0;
priv->pins_value[i] = 0;
}
return 0;
}
static int sandbox_pinmux_property_set(struct udevice *dev, u32 pinmux_group)
{
int ret;
unsigned pin_selector = pinmux_group & 0xFFFF;
unsigned func_selector = pinmux_group >> 16;
ret = sandbox_pinmux_set(dev, pin_selector, func_selector);
return ret ? ret : pin_selector;
}
static int sandbox_pinconf_set(struct udevice *dev, unsigned pin_selector,
unsigned param, unsigned argument)
{
struct sandbox_pinctrl_priv *priv = dev_get_priv(dev);
debug("sandbox pinconf: pin = %d (%s), param = %d, arg = %d\n",
pin_selector, sandbox_get_pin_name(dev, pin_selector),
param, argument);
sandbox_pins_param[pin_selector] |= BIT(param);
priv->pins_param[pin_selector] |= BIT(param);
if (argument)
sandbox_pins_value[pin_selector] |= BIT(param);
priv->pins_value[pin_selector] |= BIT(param);
else
sandbox_pins_value[pin_selector] &= ~BIT(param);
priv->pins_value[pin_selector] &= ~BIT(param);
return 0;
}
@ -191,6 +279,7 @@ const struct pinctrl_ops sandbox_pinctrl_ops = {
.get_function_name = sandbox_get_function_name,
.pinmux_set = sandbox_pinmux_set,
.pinmux_group_set = sandbox_pinmux_group_set,
.pinmux_property_set = sandbox_pinmux_property_set,
.pinconf_num_params = ARRAY_SIZE(sandbox_conf_params),
.pinconf_params = sandbox_conf_params,
.pinconf_set = sandbox_pinconf_set,
@ -207,5 +296,6 @@ U_BOOT_DRIVER(sandbox_pinctrl) = {
.name = "sandbox_pinctrl",
.id = UCLASS_PINCTRL,
.of_match = sandbox_pinctrl_match,
.priv_auto_alloc_size = sizeof(struct sandbox_pinctrl_priv),
.ops = &sandbox_pinctrl_ops,
};

View file

@ -73,6 +73,7 @@ config IMXRT_SDRAM
to support external memories like sdram, psram & nand.
This driver is for the sdram memory interface with the SEMC.
source "drivers/ram/aspeed/Kconfig"
source "drivers/ram/rockchip/Kconfig"
source "drivers/ram/sifive/Kconfig"
source "drivers/ram/stm32mp1/Kconfig"

View file

@ -14,6 +14,7 @@ obj-$(CONFIG_ARCH_ROCKCHIP) += rockchip/
obj-$(CONFIG_K3_AM654_DDRSS) += k3-am654-ddrss.o
obj-$(CONFIG_ARCH_MEDIATEK) += mediatek/
obj-$(CONFIG_ARCH_ASPEED) += aspeed/
obj-$(CONFIG_K3_J721E_DDRSS) += k3-j721e/
obj-$(CONFIG_IMXRT_SDRAM) += imxrt_sdram.o

View file

@ -0,0 +1,10 @@
if RAM || SPL_RAM
config ASPEED_DDR4_DUALX8
bool "Enable Dual X8 DDR4 die"
depends on DM && OF_CONTROL && ARCH_ASPEED
default n
help
Say Y if dual X8 DDR4 die is used on the board. The aspeed ddr sdram
controller needs to know if the memory chip mounted on the board is dual
x8 die or not. Or it may get the wrong size of the memory space.
endif

View file

@ -0,0 +1,3 @@
# SPDX-License-Identifier: GPL-2.0+
#
obj-$(CONFIG_ASPEED_AST2500) += sdram_ast2500.o

View file

@ -247,7 +247,7 @@ static int ast2500_sdrammc_init_ddr4(struct dram_info *info)
| SDRAM_PCR_RESETN_DIS
| SDRAM_PCR_RGAP_CTRL_EN | SDRAM_PCR_ODT_EN | SDRAM_PCR_ODT_EXT_EN;
const u32 conf = (SDRAM_CONF_CAP_1024M << SDRAM_CONF_CAP_SHIFT)
#ifdef CONFIG_DUALX8_RAM
#ifdef CONFIG_ASPEED_DDR4_DUALX8
| SDRAM_CONF_DUALX8
#endif
| SDRAM_CONF_SCRAMBLE | SDRAM_CONF_SCRAMBLE_PAT2 | SDRAM_CONF_DDR4;

View file

@ -130,7 +130,7 @@ static int designware_wdt_probe(struct udevice *dev)
if (ret)
return ret;
priv->clk_khz = clk_get_rate(&clk);
priv->clk_khz = clk_get_rate(&clk) / 1000;
if (!priv->clk_khz)
return -EINVAL;
#else

View file

@ -1,6 +1,6 @@
# SPDX-License-Identifier: GPL-2.0+
ifndef CONFIG_SANDBOX
ifdef CONFIG_EXAMPLES
ifdef FTRACE
subdir-ccflags-y += -finstrument-functions -DFTRACE

View file

@ -45,13 +45,7 @@
#define CONFIG_SYS_CBSIZE 512
#define CONFIG_SYS_MONITOR_BASE CONFIG_SYS_TEXT_BASE
#ifdef CONFIG_TFABOOT
#define CONFIG_SYS_FLASH_BASE 0x4000000
#define CONFIG_SYS_MAX_FLASH_BANKS 1
#else
#define CONFIG_SYS_FLASH_BASE 0x0
#define CONFIG_SYS_MAX_FLASH_BANKS 2
#endif
#define CONFIG_SYS_MAX_FLASH_BANKS_DETECT 2
#define CONFIG_SYS_MAX_FLASH_SECT 256 /* Sector: 256K, Bank: 64M */
#define CONFIG_CFI_FLASH_USE_WEAK_ACCESSORS

View file

@ -1,6 +1,6 @@
/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Copyright (C) 2015 Masahiro Yamada <yamada.masahiro@socionext.com>
* Copyright (C) 2015 Masahiro Yamada <yamada.masahiro@com>
*/
#ifndef __PINCTRL_H
@ -11,11 +11,10 @@
/**
* struct pinconf_param - pin config parameters
*
* @property: property name in DT nodes
* @param: ID for this config parameter
* @default_value: default value for this config parameter used in case
* no value is specified in DT nodes
* @property: Property name in DT nodes
* @param: ID for this config parameter
* @default_value: default value for this config parameter used in case
* no value is specified in DT nodes
*/
struct pinconf_param {
const char * const property;
@ -27,106 +26,274 @@ struct pinconf_param {
* struct pinctrl_ops - pin control operations, to be implemented by
* pin controller drivers.
*
* The @set_state is the only mandatory operation. You can implement your
* pinctrl driver with its own @set_state. In this case, the other callbacks
* are not required. Otherwise, generic pinctrl framework is also available;
* use pinctrl_generic_set_state for @set_state, and implement other operations
* set_state() is the only mandatory operation. You can implement your pinctrl
* driver with its own @set_state. In this case, the other callbacks are not
* required. Otherwise, generic pinctrl framework is also available; use
* pinctrl_generic_set_state for @set_state, and implement other operations
* depending on your necessity.
*
* @get_pins_count: return number of selectable named pins available
* in this driver. (necessary to parse "pins" property in DTS)
* @get_pin_name: return the pin name of the pin selector,
* called by the core to figure out which pin it shall do
* operations to. (necessary to parse "pins" property in DTS)
* @get_groups_count: return number of selectable named groups available
* in this driver. (necessary to parse "groups" property in DTS)
* @get_group_name: return the group name of the group selector,
* called by the core to figure out which pin group it shall do
* operations to. (necessary to parse "groups" property in DTS)
* @get_functions_count: return number of selectable named functions available
* in this driver. (necessary for pin-muxing)
* @get_function_name: return the function name of the muxing selector,
* called by the core to figure out which mux setting it shall map a
* certain device to. (necessary for pin-muxing)
* @pinmux_set: enable a certain muxing function with a certain pin.
* The @func_selector selects a certain function whereas @pin_selector
* selects a certain pin to be used. On simple controllers one of them
* may be ignored. (necessary for pin-muxing against a single pin)
* @pinmux_group_set: enable a certain muxing function with a certain pin
* group. The @func_selector selects a certain function whereas
* @group_selector selects a certain set of pins to be used. On simple
* controllers one of them may be ignored.
* (necessary for pin-muxing against a pin group)
* @pinconf_num_params: number of driver-specific parameters to be parsed
* from device trees (necessary for pin-configuration)
* @pinconf_params: list of driver_specific parameters to be parsed from
* device trees (necessary for pin-configuration)
* @pinconf_set: configure an individual pin with a given parameter.
* (necessary for pin-configuration against a single pin)
* @pinconf_group_set: configure all pins in a group with a given parameter.
* (necessary for pin-configuration against a pin group)
* @set_state: do pinctrl operations specified by @config, a pseudo device
* pointing a config node. (necessary for pinctrl_full)
* @set_state_simple: do needed pinctrl operations for a peripherl @periph.
* (necessary for pinctrl_simple)
* @get_pin_muxing: display the muxing of a given pin.
* @gpio_request_enable: requests and enables GPIO on a certain pin.
* Implement this only if you can mux every pin individually as GPIO. The
* affected GPIO range is passed along with an offset(pin number) into that
* specific GPIO range - function selectors and pin groups are orthogonal
* to this, the core will however make sure the pins do not collide.
* @gpio_disable_free: free up GPIO muxing on a certain pin, the reverse of
* @gpio_request_enable
*/
struct pinctrl_ops {
/**
* @get_pins_count: Get the number of selectable pins
*
* @dev: Pinctrl device to use
*
* This function is necessary to parse the "pins" property in DTS.
*
* @Return:
* number of selectable named pins available in this driver
*/
int (*get_pins_count)(struct udevice *dev);
/**
* @get_pin_name: Get the name of a pin
*
* @dev: Pinctrl device of the pin
*
* @selector: The pin selector
*
* This function is called by the core to figure out which pin it will
* do operations to. This function is necessary to parse the "pins"
* property in DTS.
*
* @Return: const pointer to the name of the pin
*/
const char *(*get_pin_name)(struct udevice *dev, unsigned selector);
/**
* @get_groups_count: Get the number of selectable groups
*
* @dev: Pinctrl device to use
*
* This function is necessary to parse the "groups" property in DTS.
*
* @Return:
* number of selectable named groups available in the driver
*/
int (*get_groups_count)(struct udevice *dev);
/**
* @get_group_name: Get the name of a group
*
* @dev: Pinctrl device of the group
*
* @selector: The group selector
*
* This function is called by the core to figure out which group it
* will do operations to. This function is necessary to parse the
* "groups" property in DTS.
*
* @Return: Pointer to the name of the group
*/
const char *(*get_group_name)(struct udevice *dev, unsigned selector);
/**
* @get_functions_count: Get the number of selectable functions
*
* @dev: Pinctrl device to use
*
* This function is necessary for pin-muxing.
*
* @Return:
* number of selectable named functions available in this driver
*/
int (*get_functions_count)(struct udevice *dev);
/**
* @get_function_name: Get the name of a function
*
* @dev: Pinmux device of the function
*
* @selector: The function selector
*
* This function is called by the core to figure out which mux setting
* it will map a certain device to. This function is necessary for
* pin-muxing.
*
* @Return:
* Pointer to the function name of the muxing selector
*/
const char *(*get_function_name)(struct udevice *dev,
unsigned selector);
/**
* @pinmux_set: Mux a pin to a function
*
* @dev: Pinctrl device to use
*
* @pin_selector: The pin selector
*
* @func_selector: The func selector
*
* On simple controllers one of @pin_selector or @func_selector may be
* ignored. This function is necessary for pin-muxing against a single
* pin.
*
* @Return: 0 if OK, or negative error code on failure
*/
int (*pinmux_set)(struct udevice *dev, unsigned pin_selector,
unsigned func_selector);
/**
* @pinmux_group_set: Mux a group of pins to a function
*
* @dev: Pinctrl device to use
*
* @group_selector: The group selector
*
* @func_selector: The func selector
*
* On simple controllers one of @group_selector or @func_selector may be
* ignored. This function is necessary for pin-muxing against a group of
* pins.
*
* @Return: 0 if OK, or negative error code on failure
*/
int (*pinmux_group_set)(struct udevice *dev, unsigned group_selector,
unsigned func_selector);
/**
* @pinmux_property_set: Enable a pinmux group
*
* @dev: Pinctrl device to use
*
* @pinmux_group: A u32 representing the pin identifier and mux
* settings. The exact format of a pinmux group is left
* up to the driver.
*
* Mux a single pin to a single function based on a driver-specific
* pinmux group. This function is necessary for parsing the "pinmux"
* property in DTS, and for pin-muxing against a pinmux group.
*
* @Return:
* Pin selector for the muxed pin if OK, or negative error code on
* failure
*/
int (*pinmux_property_set)(struct udevice *dev, u32 pinmux_group);
/**
* @pinconf_num_params:
* Number of driver-specific parameters to be parsed from device
* trees. This member is necessary for pin configuration.
*/
unsigned int pinconf_num_params;
/**
* @pinconf_params:
* List of driver-specific parameters to be parsed from the device
* tree. This member is necessary for pin configuration.
*/
const struct pinconf_param *pinconf_params;
/**
* @pinconf_set: Configure an individual pin with a parameter
*
* @dev: Pinctrl device to use
*
* @pin_selector: The pin selector
*
* @param: An &enum pin_config_param from @pinconf_params
*
* @argument: The argument to this param from the device tree, or
* @pinconf_params.default_value
*
* This function is necessary for pin configuration against a single
* pin.
*
* @Return: 0 if OK, or negative error code on failure
*/
int (*pinconf_set)(struct udevice *dev, unsigned pin_selector,
unsigned param, unsigned argument);
/**
* @pinconf_group_set: Configure all pins in a group with a parameter
*
* @dev: Pinctrl device to use
*
* @pin_selector: The group selector
*
* @param: A &enum pin_config_param from
* @pinconf_params
*
* @argument: The argument to this param from the device tree, or
* @pinconf_params.default_value
*
* This function is necessary for pin configuration against a group of
* pins.
*
* @Return: 0 if OK, or negative error code on failure
*/
int (*pinconf_group_set)(struct udevice *dev, unsigned group_selector,
unsigned param, unsigned argument);
/**
* @set_state: Configure a pinctrl device
*
* @dev: Pinctrl device to use
*
* @config: Pseudo device pointing a config node
*
* This function is required to be implemented by all pinctrl drivers.
* Drivers may set this member to pinctrl_generic_set_state(), which
* will call other functions in &struct pinctrl_ops to parse
* @config.
*
* @Return: 0 if OK, or negative error code on failure
*/
int (*set_state)(struct udevice *dev, struct udevice *config);
/* for pinctrl-simple */
int (*set_state_simple)(struct udevice *dev, struct udevice *periph);
/**
* request() - Request a particular pinctrl function
* @set_state_simple: Configure a pinctrl device
*
* @dev: Pinctrl device to use
*
* @config: Pseudo-device pointing a config node
*
* This function is usually a simpler version of set_state(). Only the
* first pinctrl device on the system is supported by this function.
*
* @Return: 0 if OK, or negative error code on failure
*/
int (*set_state_simple)(struct udevice *dev, struct udevice *periph);
/**
* @request: Request a particular pinctrl function
*
* @dev: Device to adjust (%UCLASS_PINCTRL)
*
* @func: Function number (driver-specific)
*
* This activates the selected function.
*
* @dev: Device to adjust (UCLASS_PINCTRL)
* @func: Function number (driver-specific)
* @return 0 if OK, -ve on error
* @Return: 0 if OK, or negative error code on failure
*/
int (*request)(struct udevice *dev, int func, int flags);
/**
* get_periph_id() - get the peripheral ID for a device
* @get_periph_id: Get the peripheral ID for a device
*
* @dev: Pinctrl device to use for decoding
*
* @periph: Device to check
*
* This generally looks at the peripheral's device tree node to work
* out the peripheral ID. The return value is normally interpreted as
* enum periph_id. so long as this is defined by the platform (which it
* &enum periph_id. so long as this is defined by the platform (which it
* should be).
*
* @dev: Pinctrl device to use for decoding
* @periph: Device to check
* @return peripheral ID of @periph, or -ENOENT on error
* @Return:
* Peripheral ID of @periph, or %-ENOENT on error
*/
int (*get_periph_id)(struct udevice *dev, struct udevice *periph);
/**
* get_gpio_mux() - get the mux value for a particular GPIO
* @get_gpio_mux: Get the mux value for a particular GPIO
*
* @dev: Pinctrl device to use
*
* @banknum: GPIO bank number
*
* @index: GPIO index within the bank
*
* This allows the raw mux value for a GPIO to be obtained. It is
* useful for displaying the function being used by that GPIO, such
@ -134,46 +301,60 @@ struct pinctrl_ops {
* subsystem and should not be used by generic code. Typically it is
* used by a GPIO driver with knowledge of the SoC pinctrl setup.
*
* @dev: Pinctrl device to use
* @banknum: GPIO bank number
* @index: GPIO index within the bank
* @return mux value (SoC-specific, e.g. 0 for input, 1 for output)
* @Return:
* Mux value (SoC-specific, e.g. 0 for input, 1 for output)
*/
int (*get_gpio_mux)(struct udevice *dev, int banknum, int index);
/**
* get_pin_muxing() - show pin muxing
* @get_pin_muxing: Show pin muxing
*
* @dev: Pinctrl device to use
*
* @selector: Pin selector
*
* @buf: Buffer to fill with pin muxing description
*
* @size: Size of @buf
*
* This allows to display the muxing of a given pin. It's useful for
* debug purpose to know if a pin is configured as GPIO or as an
* alternate function and which one.
* Typically it is used by a PINCTRL driver with knowledge of the SoC
* pinctrl setup.
* debug purposes to know if a pin is configured as GPIO or as an
* alternate function and which one. Typically it is used by a PINCTRL
* driver with knowledge of the SoC pinctrl setup.
*
* @dev: Pinctrl device to use
* @selector: Pin selector
* @buf Pin's muxing description
* @size Pin's muxing description length
* return 0 if OK, -ve on error
* @Return: 0 if OK, or negative error code on failure
*/
int (*get_pin_muxing)(struct udevice *dev, unsigned int selector,
char *buf, int size);
/**
* gpio_request_enable: requests and enables GPIO on a certain pin.
* @gpio_request_enable: Request and enable GPIO on a certain pin.
*
* @dev: Pinctrl device to use
* @selector: Pin selector
* return 0 if OK, -ve on error
* @dev: Pinctrl device to use
*
* @selector: Pin selector
*
* Implement this only if you can mux every pin individually as GPIO.
* The affected GPIO range is passed along with an offset(pin number)
* into that specific GPIO range - function selectors and pin groups are
* orthogonal to this, the core will however make sure the pins do not
* collide.
*
* @Return:
* 0 if OK, or negative error code on failure
*/
int (*gpio_request_enable)(struct udevice *dev, unsigned int selector);
/**
* gpio_disable_free: free up GPIO muxing on a certain pin.
* @gpio_disable_free: Free up GPIO muxing on a certain pin.
*
* @dev: Pinctrl device to use
* @selector: Pin selector
* return 0 if OK, -ve on error
* @dev: Pinctrl device to use
*
* @selector: Pin selector
*
* This function is the reverse of @gpio_request_enable.
*
* @Return: 0 if OK, or negative error code on failure
*/
int (*gpio_disable_free)(struct udevice *dev, unsigned int selector);
};
@ -181,27 +362,26 @@ struct pinctrl_ops {
#define pinctrl_get_ops(dev) ((struct pinctrl_ops *)(dev)->driver->ops)
/**
* Generic pin configuration paramters
* enum pin_config_param - Generic pin configuration parameters
*
* enum pin_config_param - possible pin configuration parameters
* @PIN_CONFIG_BIAS_BUS_HOLD: the pin will be set to weakly latch so that it
* @PIN_CONFIG_BIAS_BUS_HOLD: The pin will be set to weakly latch so that it
* weakly drives the last value on a tristate bus, also known as a "bus
* holder", "bus keeper" or "repeater". This allows another device on the
* bus to change the value by driving the bus high or low and switching to
* tristate. The argument is ignored.
* @PIN_CONFIG_BIAS_DISABLE: disable any pin bias on the pin, a
* @PIN_CONFIG_BIAS_DISABLE: Disable any pin bias on the pin, a
* transition from say pull-up to pull-down implies that you disable
* pull-up in the process, this setting disables all biasing.
* @PIN_CONFIG_BIAS_HIGH_IMPEDANCE: the pin will be set to a high impedance
* @PIN_CONFIG_BIAS_HIGH_IMPEDANCE: The pin will be set to a high impedance
* mode, also know as "third-state" (tristate) or "high-Z" or "floating".
* On output pins this effectively disconnects the pin, which is useful
* if for example some other pin is going to drive the signal connected
* to it for a while. Pins used for input are usually always high
* impedance.
* @PIN_CONFIG_BIAS_PULL_DOWN: the pin will be pulled down (usually with high
* @PIN_CONFIG_BIAS_PULL_DOWN: The pin will be pulled down (usually with high
* impedance to GROUND). If the argument is != 0 pull-down is enabled,
* if it is 0, pull-down is total, i.e. the pin is connected to GROUND.
* @PIN_CONFIG_BIAS_PULL_PIN_DEFAULT: the pin will be pulled up or down based
* @PIN_CONFIG_BIAS_PULL_PIN_DEFAULT: The pin will be pulled up or down based
* on embedded knowledge of the controller hardware, like current mux
* function. The pull direction and possibly strength too will normally
* be decided completely inside the hardware block and not be readable
@ -209,67 +389,67 @@ struct pinctrl_ops {
* If the argument is != 0 pull up/down is enabled, if it is 0, the
* configuration is ignored. The proper way to disable it is to use
* @PIN_CONFIG_BIAS_DISABLE.
* @PIN_CONFIG_BIAS_PULL_UP: the pin will be pulled up (usually with high
* @PIN_CONFIG_BIAS_PULL_UP: The pin will be pulled up (usually with high
* impedance to VDD). If the argument is != 0 pull-up is enabled,
* if it is 0, pull-up is total, i.e. the pin is connected to VDD.
* @PIN_CONFIG_DRIVE_OPEN_DRAIN: the pin will be driven with open drain (open
* @PIN_CONFIG_DRIVE_OPEN_DRAIN: The pin will be driven with open drain (open
* collector) which means it is usually wired with other output ports
* which are then pulled up with an external resistor. Setting this
* config will enable open drain mode, the argument is ignored.
* @PIN_CONFIG_DRIVE_OPEN_SOURCE: the pin will be driven with open source
* @PIN_CONFIG_DRIVE_OPEN_SOURCE: The pin will be driven with open source
* (open emitter). Setting this config will enable open source mode, the
* argument is ignored.
* @PIN_CONFIG_DRIVE_PUSH_PULL: the pin will be driven actively high and
* @PIN_CONFIG_DRIVE_PUSH_PULL: The pin will be driven actively high and
* low, this is the most typical case and is typically achieved with two
* active transistors on the output. Setting this config will enable
* push-pull mode, the argument is ignored.
* @PIN_CONFIG_DRIVE_STRENGTH: the pin will sink or source at most the current
* @PIN_CONFIG_DRIVE_STRENGTH: The pin will sink or source at most the current
* passed as argument. The argument is in mA.
* @PIN_CONFIG_DRIVE_STRENGTH_UA: the pin will sink or source at most the current
* passed as argument. The argument is in uA.
* @PIN_CONFIG_INPUT_DEBOUNCE: this will configure the pin to debounce mode,
* @PIN_CONFIG_DRIVE_STRENGTH_UA: The pin will sink or source at most the
* current passed as argument. The argument is in uA.
* @PIN_CONFIG_INPUT_DEBOUNCE: This will configure the pin to debounce mode,
* which means it will wait for signals to settle when reading inputs. The
* argument gives the debounce time in usecs. Setting the
* argument to zero turns debouncing off.
* @PIN_CONFIG_INPUT_ENABLE: enable the pin's input. Note that this does not
* @PIN_CONFIG_INPUT_ENABLE: Enable the pin's input. Note that this does not
* affect the pin's ability to drive output. 1 enables input, 0 disables
* input.
* @PIN_CONFIG_INPUT_SCHMITT: this will configure an input pin to run in
* @PIN_CONFIG_INPUT_SCHMITT: This will configure an input pin to run in
* schmitt-trigger mode. If the schmitt-trigger has adjustable hysteresis,
* the threshold value is given on a custom format as argument when
* setting pins to this mode.
* @PIN_CONFIG_INPUT_SCHMITT_ENABLE: control schmitt-trigger mode on the pin.
* @PIN_CONFIG_INPUT_SCHMITT_ENABLE: Control schmitt-trigger mode on the pin.
* If the argument != 0, schmitt-trigger mode is enabled. If it's 0,
* schmitt-trigger mode is disabled.
* @PIN_CONFIG_LOW_POWER_MODE: this will configure the pin for low power
* @PIN_CONFIG_LOW_POWER_MODE: This will configure the pin for low power
* operation, if several modes of operation are supported these can be
* passed in the argument on a custom form, else just use argument 1
* to indicate low power mode, argument 0 turns low power mode off.
* @PIN_CONFIG_OUTPUT_ENABLE: this will enable the pin's output mode
* @PIN_CONFIG_OUTPUT_ENABLE: This will enable the pin's output mode
* without driving a value there. For most platforms this reduces to
* enable the output buffers and then let the pin controller current
* configuration (eg. the currently selected mux function) drive values on
* the line. Use argument 1 to enable output mode, argument 0 to disable
* it.
* @PIN_CONFIG_OUTPUT: this will configure the pin as an output and drive a
* @PIN_CONFIG_OUTPUT: This will configure the pin as an output and drive a
* value on the line. Use argument 1 to indicate high level, argument 0 to
* indicate low level. (Please see Documentation/driver-api/pinctl.rst,
* section "GPIO mode pitfalls" for a discussion around this parameter.)
* @PIN_CONFIG_POWER_SOURCE: if the pin can select between different power
* @PIN_CONFIG_POWER_SOURCE: If the pin can select between different power
* supplies, the argument to this parameter (on a custom format) tells
* the driver which alternative power source to use.
* @PIN_CONFIG_SLEEP_HARDWARE_STATE: indicate this is sleep related state.
* @PIN_CONFIG_SLEW_RATE: if the pin can select slew rate, the argument to
* @PIN_CONFIG_SLEEP_HARDWARE_STATE: Indicate this is sleep related state.
* @PIN_CONFIG_SLEW_RATE: If the pin can select slew rate, the argument to
* this parameter (on a custom format) tells the driver which alternative
* slew rate to use.
* @PIN_CONFIG_SKEW_DELAY: if the pin has programmable skew rate (on inputs)
* @PIN_CONFIG_SKEW_DELAY: If the pin has programmable skew rate (on inputs)
* or latch delay (on outputs) this parameter (in a custom format)
* specifies the clock skew or latch delay. It typically controls how
* many double inverters are put in front of the line.
* @PIN_CONFIG_END: this is the last enumerator for pin configurations, if
* @PIN_CONFIG_END: This is the last enumerator for pin configurations, if
* you need to pass in custom configurations to the pin controller, use
* PIN_CONFIG_END+1 as the base offset.
* @PIN_CONFIG_MAX: this is the maximum configuration value that can be
* @PIN_CONFIG_MAX: This is the maximum configuration value that can be
* presented using the packed format.
*/
enum pin_config_param {
@ -301,13 +481,14 @@ enum pin_config_param {
#if CONFIG_IS_ENABLED(PINCTRL_GENERIC)
/**
* pinctrl_generic_set_state() - generic set_state operation
* pinctrl_generic_set_state() - Generic set_state operation
* @pctldev: Pinctrl device to use
* @config: Config device (pseudo device), pointing a config node in DTS
*
* Parse the DT node of @config and its children and handle generic properties
* such as "pins", "groups", "functions", and pin configuration parameters.
*
* @pctldev: pinctrl device
* @config: config device (pseudo device), pointing a config node in DTS
* @return: 0 on success, or negative error code on failure
* Return: 0 on success, or negative error code on failure
*/
int pinctrl_generic_set_state(struct udevice *pctldev, struct udevice *config);
#else
@ -320,11 +501,11 @@ static inline int pinctrl_generic_set_state(struct udevice *pctldev,
#if CONFIG_IS_ENABLED(PINCTRL)
/**
* pinctrl_select_state() - set a device to a given state
* pinctrl_select_state() - Set a device to a given state
* @dev: Peripheral device
* @statename: State name, like "default"
*
* @dev: peripheral device
* @statename: state name, like "default"
* @return: 0 on success, or negative error code on failure
* Return: 0 on success, or negative error code on failure
*/
int pinctrl_select_state(struct udevice *dev, const char *statename);
#else
@ -337,40 +518,43 @@ static inline int pinctrl_select_state(struct udevice *dev,
/**
* pinctrl_request() - Request a particular pinctrl function
*
* @dev: Device to check (UCLASS_PINCTRL)
* @dev: Pinctrl device to use
* @func: Function number (driver-specific)
* @flags: Flags (driver-specific)
* @return 0 if OK, -ve on error
*
* Return: 0 if OK, or negative error code on failure
*/
int pinctrl_request(struct udevice *dev, int func, int flags);
/**
* pinctrl_request_noflags() - Request a particular pinctrl function
* @dev: Pinctrl device to use
* @func: Function number (driver-specific)
*
* This is similar to pinctrl_request() but uses 0 for @flags.
*
* @dev: Device to check (UCLASS_PINCTRL)
* @func: Function number (driver-specific)
* @return 0 if OK, -ve on error
* Return: 0 if OK, or negative error code on failure
*/
int pinctrl_request_noflags(struct udevice *dev, int func);
/**
* pinctrl_get_periph_id() - get the peripheral ID for a device
* pinctrl_get_periph_id() - Get the peripheral ID for a device
* @dev: Pinctrl device to use for decoding
* @periph: Device to check
*
* This generally looks at the peripheral's device tree node to work out the
* peripheral ID. The return value is normally interpreted as enum periph_id.
* so long as this is defined by the platform (which it should be).
*
* @dev: Pinctrl device to use for decoding
* @periph: Device to check
* @return peripheral ID of @periph, or -ENOENT on error
* Return: Peripheral ID of @periph, or -ENOENT on error
*/
int pinctrl_get_periph_id(struct udevice *dev, struct udevice *periph);
/**
* pinctrl_get_gpio_mux() - get the mux value for a particular GPIO
* @dev: Pinctrl device to use
* @banknum: GPIO bank number
* @index: GPIO index within the bank
*
* This allows the raw mux value for a GPIO to be obtained. It is
* useful for displaying the function being used by that GPIO, such
@ -378,66 +562,64 @@ int pinctrl_get_periph_id(struct udevice *dev, struct udevice *periph);
* subsystem and should not be used by generic code. Typically it is
* used by a GPIO driver with knowledge of the SoC pinctrl setup.
*
* @dev: Pinctrl device to use
* @banknum: GPIO bank number
* @index: GPIO index within the bank
* @return mux value (SoC-specific, e.g. 0 for input, 1 for output)
* Return: Mux value (SoC-specific, e.g. 0 for input, 1 for output)
*/
int pinctrl_get_gpio_mux(struct udevice *dev, int banknum, int index);
/**
* pinctrl_get_pin_muxing() - Returns the muxing description
* @dev: Pinctrl device to use
* @selector: Pin index within pin-controller
* @buf: Pin's muxing description
* @size: Pin's muxing description length
*
* This allows to display the muxing description of the given pin for
* debug purpose
*
* @dev: Pinctrl device to use
* @selector Pin index within pin-controller
* @buf Pin's muxing description
* @size Pin's muxing description length
* @return 0 if OK, -ve on error
* Return: 0 if OK, or negative error code on failure
*/
int pinctrl_get_pin_muxing(struct udevice *dev, int selector, char *buf,
int size);
/**
* pinctrl_get_pins_count() - display pin-controller pins number
* pinctrl_get_pins_count() - Display pin-controller pins number
* @dev: Pinctrl device to use
*
* This allows to know the number of pins owned by a given pin-controller
*
* @dev: Pinctrl device to use
* @return pins number if OK, -ve on error
* Return: Number of pins if OK, or negative error code on failure
*/
int pinctrl_get_pins_count(struct udevice *dev);
/**
* pinctrl_get_pin_name() - Returns the pin's name
* @dev: Pinctrl device to use
* @selector: Pin index within pin-controller
* @buf: Buffer to fill with the name of the pin
* @size: Size of @buf
*
* This allows to display the pin's name for debug purpose
*
* @dev: Pinctrl device to use
* @selector Pin index within pin-controller
* @buf Pin's name
* @return 0 if OK, -ve on error
* Return: 0 if OK, or negative error code on failure
*/
int pinctrl_get_pin_name(struct udevice *dev, int selector, char *buf,
int size);
/**
* pinctrl_gpio_request() - request a single pin to be used as GPIO
* pinctrl_gpio_request() - Request a single pin to be used as GPIO
* @dev: GPIO peripheral device
* @offset: GPIO pin offset from the GPIO controller
*
* @dev: GPIO peripheral device
* @offset: the GPIO pin offset from the GPIO controller
* @return: 0 on success, or negative error code on failure
* Return: 0 on success, or negative error code on failure
*/
int pinctrl_gpio_request(struct udevice *dev, unsigned offset);
/**
* pinctrl_gpio_free() - free a single pin used as GPIO
* pinctrl_gpio_free() - Free a single pin used as GPIO
* @dev: GPIO peripheral device
* @offset: GPIO pin offset from the GPIO controller
*
* @dev: GPIO peripheral device
* @offset: the GPIO pin offset from the GPIO controller
* @return: 0 on success, or negative error code on failure
* Return: 0 on success, or negative error code on failure
*/
int pinctrl_gpio_free(struct udevice *dev, unsigned offset);

View file

@ -0,0 +1,277 @@
/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Copyright (C) 2020 Sean Anderson <seanga2@gmail.com>
*/
#ifndef DT_K210_PINCTRL_H
#define DT_K210_PINCTRL_H
/*
* Full list of FPIOA functions from
* kendryte-standalone-sdk/lib/drivers/include/fpioa.h
*/
#define K210_PCF_MASK GENMASK(7, 0)
#define K210_PCF_JTAG_TCLK 0 /* JTAG Test Clock */
#define K210_PCF_JTAG_TDI 1 /* JTAG Test Data In */
#define K210_PCF_JTAG_TMS 2 /* JTAG Test Mode Select */
#define K210_PCF_JTAG_TDO 3 /* JTAG Test Data Out */
#define K210_PCF_SPI0_D0 4 /* SPI0 Data 0 */
#define K210_PCF_SPI0_D1 5 /* SPI0 Data 1 */
#define K210_PCF_SPI0_D2 6 /* SPI0 Data 2 */
#define K210_PCF_SPI0_D3 7 /* SPI0 Data 3 */
#define K210_PCF_SPI0_D4 8 /* SPI0 Data 4 */
#define K210_PCF_SPI0_D5 9 /* SPI0 Data 5 */
#define K210_PCF_SPI0_D6 10 /* SPI0 Data 6 */
#define K210_PCF_SPI0_D7 11 /* SPI0 Data 7 */
#define K210_PCF_SPI0_SS0 12 /* SPI0 Chip Select 0 */
#define K210_PCF_SPI0_SS1 13 /* SPI0 Chip Select 1 */
#define K210_PCF_SPI0_SS2 14 /* SPI0 Chip Select 2 */
#define K210_PCF_SPI0_SS3 15 /* SPI0 Chip Select 3 */
#define K210_PCF_SPI0_ARB 16 /* SPI0 Arbitration */
#define K210_PCF_SPI0_SCLK 17 /* SPI0 Serial Clock */
#define K210_PCF_UARTHS_RX 18 /* UART High speed Receiver */
#define K210_PCF_UARTHS_TX 19 /* UART High speed Transmitter */
#define K210_PCF_RESV6 20 /* Reserved function */
#define K210_PCF_RESV7 21 /* Reserved function */
#define K210_PCF_CLK_SPI1 22 /* Clock SPI1 */
#define K210_PCF_CLK_I2C1 23 /* Clock I2C1 */
#define K210_PCF_GPIOHS0 24 /* GPIO High speed 0 */
#define K210_PCF_GPIOHS1 25 /* GPIO High speed 1 */
#define K210_PCF_GPIOHS2 26 /* GPIO High speed 2 */
#define K210_PCF_GPIOHS3 27 /* GPIO High speed 3 */
#define K210_PCF_GPIOHS4 28 /* GPIO High speed 4 */
#define K210_PCF_GPIOHS5 29 /* GPIO High speed 5 */
#define K210_PCF_GPIOHS6 30 /* GPIO High speed 6 */
#define K210_PCF_GPIOHS7 31 /* GPIO High speed 7 */
#define K210_PCF_GPIOHS8 32 /* GPIO High speed 8 */
#define K210_PCF_GPIOHS9 33 /* GPIO High speed 9 */
#define K210_PCF_GPIOHS10 34 /* GPIO High speed 10 */
#define K210_PCF_GPIOHS11 35 /* GPIO High speed 11 */
#define K210_PCF_GPIOHS12 36 /* GPIO High speed 12 */
#define K210_PCF_GPIOHS13 37 /* GPIO High speed 13 */
#define K210_PCF_GPIOHS14 38 /* GPIO High speed 14 */
#define K210_PCF_GPIOHS15 39 /* GPIO High speed 15 */
#define K210_PCF_GPIOHS16 40 /* GPIO High speed 16 */
#define K210_PCF_GPIOHS17 41 /* GPIO High speed 17 */
#define K210_PCF_GPIOHS18 42 /* GPIO High speed 18 */
#define K210_PCF_GPIOHS19 43 /* GPIO High speed 19 */
#define K210_PCF_GPIOHS20 44 /* GPIO High speed 20 */
#define K210_PCF_GPIOHS21 45 /* GPIO High speed 21 */
#define K210_PCF_GPIOHS22 46 /* GPIO High speed 22 */
#define K210_PCF_GPIOHS23 47 /* GPIO High speed 23 */
#define K210_PCF_GPIOHS24 48 /* GPIO High speed 24 */
#define K210_PCF_GPIOHS25 49 /* GPIO High speed 25 */
#define K210_PCF_GPIOHS26 50 /* GPIO High speed 26 */
#define K210_PCF_GPIOHS27 51 /* GPIO High speed 27 */
#define K210_PCF_GPIOHS28 52 /* GPIO High speed 28 */
#define K210_PCF_GPIOHS29 53 /* GPIO High speed 29 */
#define K210_PCF_GPIOHS30 54 /* GPIO High speed 30 */
#define K210_PCF_GPIOHS31 55 /* GPIO High speed 31 */
#define K210_PCF_GPIO0 56 /* GPIO pin 0 */
#define K210_PCF_GPIO1 57 /* GPIO pin 1 */
#define K210_PCF_GPIO2 58 /* GPIO pin 2 */
#define K210_PCF_GPIO3 59 /* GPIO pin 3 */
#define K210_PCF_GPIO4 60 /* GPIO pin 4 */
#define K210_PCF_GPIO5 61 /* GPIO pin 5 */
#define K210_PCF_GPIO6 62 /* GPIO pin 6 */
#define K210_PCF_GPIO7 63 /* GPIO pin 7 */
#define K210_PCF_UART1_RX 64 /* UART1 Receiver */
#define K210_PCF_UART1_TX 65 /* UART1 Transmitter */
#define K210_PCF_UART2_RX 66 /* UART2 Receiver */
#define K210_PCF_UART2_TX 67 /* UART2 Transmitter */
#define K210_PCF_UART3_RX 68 /* UART3 Receiver */
#define K210_PCF_UART3_TX 69 /* UART3 Transmitter */
#define K210_PCF_SPI1_D0 70 /* SPI1 Data 0 */
#define K210_PCF_SPI1_D1 71 /* SPI1 Data 1 */
#define K210_PCF_SPI1_D2 72 /* SPI1 Data 2 */
#define K210_PCF_SPI1_D3 73 /* SPI1 Data 3 */
#define K210_PCF_SPI1_D4 74 /* SPI1 Data 4 */
#define K210_PCF_SPI1_D5 75 /* SPI1 Data 5 */
#define K210_PCF_SPI1_D6 76 /* SPI1 Data 6 */
#define K210_PCF_SPI1_D7 77 /* SPI1 Data 7 */
#define K210_PCF_SPI1_SS0 78 /* SPI1 Chip Select 0 */
#define K210_PCF_SPI1_SS1 79 /* SPI1 Chip Select 1 */
#define K210_PCF_SPI1_SS2 80 /* SPI1 Chip Select 2 */
#define K210_PCF_SPI1_SS3 81 /* SPI1 Chip Select 3 */
#define K210_PCF_SPI1_ARB 82 /* SPI1 Arbitration */
#define K210_PCF_SPI1_SCLK 83 /* SPI1 Serial Clock */
#define K210_PCF_SPI2_D0 84 /* SPI2 Data 0 */
#define K210_PCF_SPI2_SS 85 /* SPI2 Select */
#define K210_PCF_SPI2_SCLK 86 /* SPI2 Serial Clock */
#define K210_PCF_I2S0_MCLK 87 /* I2S0 Master Clock */
#define K210_PCF_I2S0_SCLK 88 /* I2S0 Serial Clock(BCLK) */
#define K210_PCF_I2S0_WS 89 /* I2S0 Word Select(LRCLK) */
#define K210_PCF_I2S0_IN_D0 90 /* I2S0 Serial Data Input 0 */
#define K210_PCF_I2S0_IN_D1 91 /* I2S0 Serial Data Input 1 */
#define K210_PCF_I2S0_IN_D2 92 /* I2S0 Serial Data Input 2 */
#define K210_PCF_I2S0_IN_D3 93 /* I2S0 Serial Data Input 3 */
#define K210_PCF_I2S0_OUT_D0 94 /* I2S0 Serial Data Output 0 */
#define K210_PCF_I2S0_OUT_D1 95 /* I2S0 Serial Data Output 1 */
#define K210_PCF_I2S0_OUT_D2 96 /* I2S0 Serial Data Output 2 */
#define K210_PCF_I2S0_OUT_D3 97 /* I2S0 Serial Data Output 3 */
#define K210_PCF_I2S1_MCLK 98 /* I2S1 Master Clock */
#define K210_PCF_I2S1_SCLK 99 /* I2S1 Serial Clock(BCLK) */
#define K210_PCF_I2S1_WS 100 /* I2S1 Word Select(LRCLK) */
#define K210_PCF_I2S1_IN_D0 101 /* I2S1 Serial Data Input 0 */
#define K210_PCF_I2S1_IN_D1 102 /* I2S1 Serial Data Input 1 */
#define K210_PCF_I2S1_IN_D2 103 /* I2S1 Serial Data Input 2 */
#define K210_PCF_I2S1_IN_D3 104 /* I2S1 Serial Data Input 3 */
#define K210_PCF_I2S1_OUT_D0 105 /* I2S1 Serial Data Output 0 */
#define K210_PCF_I2S1_OUT_D1 106 /* I2S1 Serial Data Output 1 */
#define K210_PCF_I2S1_OUT_D2 107 /* I2S1 Serial Data Output 2 */
#define K210_PCF_I2S1_OUT_D3 108 /* I2S1 Serial Data Output 3 */
#define K210_PCF_I2S2_MCLK 109 /* I2S2 Master Clock */
#define K210_PCF_I2S2_SCLK 110 /* I2S2 Serial Clock(BCLK) */
#define K210_PCF_I2S2_WS 111 /* I2S2 Word Select(LRCLK) */
#define K210_PCF_I2S2_IN_D0 112 /* I2S2 Serial Data Input 0 */
#define K210_PCF_I2S2_IN_D1 113 /* I2S2 Serial Data Input 1 */
#define K210_PCF_I2S2_IN_D2 114 /* I2S2 Serial Data Input 2 */
#define K210_PCF_I2S2_IN_D3 115 /* I2S2 Serial Data Input 3 */
#define K210_PCF_I2S2_OUT_D0 116 /* I2S2 Serial Data Output 0 */
#define K210_PCF_I2S2_OUT_D1 117 /* I2S2 Serial Data Output 1 */
#define K210_PCF_I2S2_OUT_D2 118 /* I2S2 Serial Data Output 2 */
#define K210_PCF_I2S2_OUT_D3 119 /* I2S2 Serial Data Output 3 */
#define K210_PCF_RESV0 120 /* Reserved function */
#define K210_PCF_RESV1 121 /* Reserved function */
#define K210_PCF_RESV2 122 /* Reserved function */
#define K210_PCF_RESV3 123 /* Reserved function */
#define K210_PCF_RESV4 124 /* Reserved function */
#define K210_PCF_RESV5 125 /* Reserved function */
#define K210_PCF_I2C0_SCLK 126 /* I2C0 Serial Clock */
#define K210_PCF_I2C0_SDA 127 /* I2C0 Serial Data */
#define K210_PCF_I2C1_SCLK 128 /* I2C1 Serial Clock */
#define K210_PCF_I2C1_SDA 129 /* I2C1 Serial Data */
#define K210_PCF_I2C2_SCLK 130 /* I2C2 Serial Clock */
#define K210_PCF_I2C2_SDA 131 /* I2C2 Serial Data */
#define K210_PCF_DVP_XCLK 132 /* DVP System Clock */
#define K210_PCF_DVP_RST 133 /* DVP System Reset */
#define K210_PCF_DVP_PWDN 134 /* DVP Power Down Mode */
#define K210_PCF_DVP_VSYNC 135 /* DVP Vertical Sync */
#define K210_PCF_DVP_HSYNC 136 /* DVP Horizontal Sync */
#define K210_PCF_DVP_PCLK 137 /* Pixel Clock */
#define K210_PCF_DVP_D0 138 /* Data Bit 0 */
#define K210_PCF_DVP_D1 139 /* Data Bit 1 */
#define K210_PCF_DVP_D2 140 /* Data Bit 2 */
#define K210_PCF_DVP_D3 141 /* Data Bit 3 */
#define K210_PCF_DVP_D4 142 /* Data Bit 4 */
#define K210_PCF_DVP_D5 143 /* Data Bit 5 */
#define K210_PCF_DVP_D6 144 /* Data Bit 6 */
#define K210_PCF_DVP_D7 145 /* Data Bit 7 */
#define K210_PCF_SCCB_SCLK 146 /* Serial Camera Control Bus Clock */
#define K210_PCF_SCCB_SDA 147 /* Serial Camera Control Bus Data */
#define K210_PCF_UART1_CTS 148 /* UART1 Clear To Send */
#define K210_PCF_UART1_DSR 149 /* UART1 Data Set Ready */
#define K210_PCF_UART1_DCD 150 /* UART1 Data Carrier Detect */
#define K210_PCF_UART1_RI 151 /* UART1 Ring Indicator */
#define K210_PCF_UART1_SIR_IN 152 /* UART1 Serial Infrared Input */
#define K210_PCF_UART1_DTR 153 /* UART1 Data Terminal Ready */
#define K210_PCF_UART1_RTS 154 /* UART1 Request To Send */
#define K210_PCF_UART1_OUT2 155 /* UART1 User-designated Output 2 */
#define K210_PCF_UART1_OUT1 156 /* UART1 User-designated Output 1 */
#define K210_PCF_UART1_SIR_OUT 157 /* UART1 Serial Infrared Output */
#define K210_PCF_UART1_BAUD 158 /* UART1 Transmit Clock Output */
#define K210_PCF_UART1_RE 159 /* UART1 Receiver Output Enable */
#define K210_PCF_UART1_DE 160 /* UART1 Driver Output Enable */
#define K210_PCF_UART1_RS485_EN 161 /* UART1 RS485 Enable */
#define K210_PCF_UART2_CTS 162 /* UART2 Clear To Send */
#define K210_PCF_UART2_DSR 163 /* UART2 Data Set Ready */
#define K210_PCF_UART2_DCD 164 /* UART2 Data Carrier Detect */
#define K210_PCF_UART2_RI 165 /* UART2 Ring Indicator */
#define K210_PCF_UART2_SIR_IN 166 /* UART2 Serial Infrared Input */
#define K210_PCF_UART2_DTR 167 /* UART2 Data Terminal Ready */
#define K210_PCF_UART2_RTS 168 /* UART2 Request To Send */
#define K210_PCF_UART2_OUT2 169 /* UART2 User-designated Output 2 */
#define K210_PCF_UART2_OUT1 170 /* UART2 User-designated Output 1 */
#define K210_PCF_UART2_SIR_OUT 171 /* UART2 Serial Infrared Output */
#define K210_PCF_UART2_BAUD 172 /* UART2 Transmit Clock Output */
#define K210_PCF_UART2_RE 173 /* UART2 Receiver Output Enable */
#define K210_PCF_UART2_DE 174 /* UART2 Driver Output Enable */
#define K210_PCF_UART2_RS485_EN 175 /* UART2 RS485 Enable */
#define K210_PCF_UART3_CTS 176 /* UART3 Clear To Send */
#define K210_PCF_UART3_DSR 177 /* UART3 Data Set Ready */
#define K210_PCF_UART3_DCD 178 /* UART3 Data Carrier Detect */
#define K210_PCF_UART3_RI 179 /* UART3 Ring Indicator */
#define K210_PCF_UART3_SIR_IN 180 /* UART3 Serial Infrared Input */
#define K210_PCF_UART3_DTR 181 /* UART3 Data Terminal Ready */
#define K210_PCF_UART3_RTS 182 /* UART3 Request To Send */
#define K210_PCF_UART3_OUT2 183 /* UART3 User-designated Output 2 */
#define K210_PCF_UART3_OUT1 184 /* UART3 User-designated Output 1 */
#define K210_PCF_UART3_SIR_OUT 185 /* UART3 Serial Infrared Output */
#define K210_PCF_UART3_BAUD 186 /* UART3 Transmit Clock Output */
#define K210_PCF_UART3_RE 187 /* UART3 Receiver Output Enable */
#define K210_PCF_UART3_DE 188 /* UART3 Driver Output Enable */
#define K210_PCF_UART3_RS485_EN 189 /* UART3 RS485 Enable */
#define K210_PCF_TIMER0_TOGGLE1 190 /* TIMER0 Toggle Output 1 */
#define K210_PCF_TIMER0_TOGGLE2 191 /* TIMER0 Toggle Output 2 */
#define K210_PCF_TIMER0_TOGGLE3 192 /* TIMER0 Toggle Output 3 */
#define K210_PCF_TIMER0_TOGGLE4 193 /* TIMER0 Toggle Output 4 */
#define K210_PCF_TIMER1_TOGGLE1 194 /* TIMER1 Toggle Output 1 */
#define K210_PCF_TIMER1_TOGGLE2 195 /* TIMER1 Toggle Output 2 */
#define K210_PCF_TIMER1_TOGGLE3 196 /* TIMER1 Toggle Output 3 */
#define K210_PCF_TIMER1_TOGGLE4 197 /* TIMER1 Toggle Output 4 */
#define K210_PCF_TIMER2_TOGGLE1 198 /* TIMER2 Toggle Output 1 */
#define K210_PCF_TIMER2_TOGGLE2 199 /* TIMER2 Toggle Output 2 */
#define K210_PCF_TIMER2_TOGGLE3 200 /* TIMER2 Toggle Output 3 */
#define K210_PCF_TIMER2_TOGGLE4 201 /* TIMER2 Toggle Output 4 */
#define K210_PCF_CLK_SPI2 202 /* Clock SPI2 */
#define K210_PCF_CLK_I2C2 203 /* Clock I2C2 */
#define K210_PCF_INTERNAL0 204 /* Internal function signal 0 */
#define K210_PCF_INTERNAL1 205 /* Internal function signal 1 */
#define K210_PCF_INTERNAL2 206 /* Internal function signal 2 */
#define K210_PCF_INTERNAL3 207 /* Internal function signal 3 */
#define K210_PCF_INTERNAL4 208 /* Internal function signal 4 */
#define K210_PCF_INTERNAL5 209 /* Internal function signal 5 */
#define K210_PCF_INTERNAL6 210 /* Internal function signal 6 */
#define K210_PCF_INTERNAL7 211 /* Internal function signal 7 */
#define K210_PCF_INTERNAL8 212 /* Internal function signal 8 */
#define K210_PCF_INTERNAL9 213 /* Internal function signal 9 */
#define K210_PCF_INTERNAL10 214 /* Internal function signal 10 */
#define K210_PCF_INTERNAL11 215 /* Internal function signal 11 */
#define K210_PCF_INTERNAL12 216 /* Internal function signal 12 */
#define K210_PCF_INTERNAL13 217 /* Internal function signal 13 */
#define K210_PCF_INTERNAL14 218 /* Internal function signal 14 */
#define K210_PCF_INTERNAL15 219 /* Internal function signal 15 */
#define K210_PCF_INTERNAL16 220 /* Internal function signal 16 */
#define K210_PCF_INTERNAL17 221 /* Internal function signal 17 */
#define K210_PCF_CONSTANT 222 /* Constant function */
#define K210_PCF_INTERNAL18 223 /* Internal function signal 18 */
#define K210_PCF_DEBUG0 224 /* Debug function 0 */
#define K210_PCF_DEBUG1 225 /* Debug function 1 */
#define K210_PCF_DEBUG2 226 /* Debug function 2 */
#define K210_PCF_DEBUG3 227 /* Debug function 3 */
#define K210_PCF_DEBUG4 228 /* Debug function 4 */
#define K210_PCF_DEBUG5 229 /* Debug function 5 */
#define K210_PCF_DEBUG6 230 /* Debug function 6 */
#define K210_PCF_DEBUG7 231 /* Debug function 7 */
#define K210_PCF_DEBUG8 232 /* Debug function 8 */
#define K210_PCF_DEBUG9 233 /* Debug function 9 */
#define K210_PCF_DEBUG10 234 /* Debug function 10 */
#define K210_PCF_DEBUG11 235 /* Debug function 11 */
#define K210_PCF_DEBUG12 236 /* Debug function 12 */
#define K210_PCF_DEBUG13 237 /* Debug function 13 */
#define K210_PCF_DEBUG14 238 /* Debug function 14 */
#define K210_PCF_DEBUG15 239 /* Debug function 15 */
#define K210_PCF_DEBUG16 240 /* Debug function 16 */
#define K210_PCF_DEBUG17 241 /* Debug function 17 */
#define K210_PCF_DEBUG18 242 /* Debug function 18 */
#define K210_PCF_DEBUG19 243 /* Debug function 19 */
#define K210_PCF_DEBUG20 244 /* Debug function 20 */
#define K210_PCF_DEBUG21 245 /* Debug function 21 */
#define K210_PCF_DEBUG22 246 /* Debug function 22 */
#define K210_PCF_DEBUG23 247 /* Debug function 23 */
#define K210_PCF_DEBUG24 248 /* Debug function 24 */
#define K210_PCF_DEBUG25 249 /* Debug function 25 */
#define K210_PCF_DEBUG26 250 /* Debug function 26 */
#define K210_PCF_DEBUG27 251 /* Debug function 27 */
#define K210_PCF_DEBUG28 252 /* Debug function 28 */
#define K210_PCF_DEBUG29 253 /* Debug function 29 */
#define K210_PCF_DEBUG30 254 /* Debug function 30 */
#define K210_PCF_DEBUG31 255 /* Debug function 31 */
#define K210_FPIOA(pin, func) (((pin) << 16) | (func))
#define K210_FPIOA_DO(pin, func) (((pin) << 16) | (1 << 8) | (func))
#define K210_PC_POWER_3V3 0
#define K210_PC_POWER_1V8 1
#endif /* DT_K210_PINCTRL_H */

View file

@ -0,0 +1,19 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2020 Sean Anderson <seanga2@gmail.com>
*/
#ifndef SANDBOX_PINMUX_H
#define SANDBOX_PINMUX_H
#define SANDBOX_PINMUX_UART 0
#define SANDBOX_PINMUX_I2C 1
#define SANDBOX_PINMUX_SPI 2
#define SANDBOX_PINMUX_I2S 3
#define SANDBOX_PINMUX_GPIO 4
#define SANDBOX_PINMUX_CS 5
#define SANDBOX_PINMUX_PWM 6
#define SANDBOX_PINMUX(pin, func) ((func) << 16 | (pin))
#endif /* SANDBOX_PINMUX_H */

View file

@ -81,4 +81,7 @@ obj-$(CONFIG_CLK_K210_SET_RATE) += k210_pll.o
obj-$(CONFIG_SIMPLE_PM_BUS) += simple-pm-bus.o
obj-$(CONFIG_RESET_SYSCON) += syscon-reset.o
obj-$(CONFIG_SCMI_FIRMWARE) += scmi.o
ifneq ($(CONFIG_PINMUX),)
obj-$(CONFIG_PINCONF) += pinmux.o
endif
endif

View file

@ -40,7 +40,8 @@ static int dm_test_led_default_state(struct unit_test_state *uts)
ut_assertok(led_get_by_label("sandbox:default_on", &dev));
ut_asserteq(LEDST_ON, led_get_state(dev));
ut_assertok(led_get_by_label("sandbox:default_off", &dev));
/* Also tests default label behaviour */
ut_assertok(led_get_by_label("default_off", &dev));
ut_asserteq(LEDST_OFF, led_get_state(dev));
return 0;

57
test/dm/pinmux.c Normal file
View file

@ -0,0 +1,57 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2020 Sean Anderson <seanga2@gmail.com>
*/
#include <common.h>
#include <dm.h>
#include <dm/pinctrl.h>
#include <dm/test.h>
#include <test/ut.h>
static int dm_test_pinmux(struct unit_test_state *uts)
{
char buf[64];
struct udevice *dev;
#define test_muxing(selector, expected) do { \
ut_assertok(pinctrl_get_pin_muxing(dev, selector, buf, sizeof(buf))); \
ut_asserteq_str(expected, (char *)&buf); \
} while (0)
ut_assertok(uclass_get_device_by_name(UCLASS_PINCTRL, "pinctrl", &dev));
test_muxing(0, "UART TX.");
test_muxing(1, "UART RX.");
test_muxing(2, "I2S SCK.");
test_muxing(3, "I2S SD.");
test_muxing(4, "I2S WS.");
test_muxing(5, "GPIO0 bias-pull-up input-disable.");
test_muxing(6, "GPIO1 drive-open-drain.");
test_muxing(7, "GPIO2 bias-pull-down input-enable.");
test_muxing(8, "GPIO3 bias-disable.");
ut_assertok(pinctrl_select_state(dev, "alternate"));
test_muxing(0, "I2C SCL drive-open-drain.");
test_muxing(1, "I2C SDA drive-open-drain.");
test_muxing(2, "SPI SCLK.");
test_muxing(3, "SPI MOSI.");
test_muxing(4, "SPI MISO.");
test_muxing(5, "SPI CS0.");
test_muxing(6, "SPI CS1.");
test_muxing(7, "GPIO2 bias-pull-down input-enable.");
test_muxing(8, "GPIO3 bias-disable.");
ut_assertok(pinctrl_select_state(dev, "0"));
test_muxing(0, "I2C SCL drive-open-drain.");
test_muxing(1, "I2C SDA drive-open-drain.");
test_muxing(2, "I2S SCK.");
test_muxing(3, "I2S SD.");
test_muxing(4, "I2S WS.");
test_muxing(5, "GPIO0 bias-pull-up input-disable.");
test_muxing(6, "GPIO1 drive-open-drain.");
test_muxing(7, "GPIO2 bias-pull-down input-enable.");
test_muxing(8, "GPIO3 bias-disable.");
return 0;
}
DM_TEST(dm_test_pinmux, UT_TESTF_SCAN_FDT);

View file

@ -28,15 +28,15 @@ def test_pinmux_status_all(u_boot_console):
assert ('a6 : gpio output .' in output)
assert ('pinctrl:' in output)
assert ('SCL : I2C SCL.' in output)
assert ('SDA : I2C SDA.' in output)
assert ('TX : Uart TX.' in output)
assert ('RX : Uart RX.' in output)
assert ('W1 : 1-wire gpio.' in output)
assert ('GPIO0 : gpio bias-pull-up input-disable.' in output)
assert ('GPIO1 : gpio drive-open-drain.' in output)
assert ('GPIO2 : gpio bias-pull-down input-enable.' in output)
assert ('GPIO3 : gpio bias-disable.' in output)
assert ('P0 : UART TX.' in output)
assert ('P1 : UART RX.' in output)
assert ('P2 : I2S SCK.' in output)
assert ('P3 : I2S SD.' in output)
assert ('P4 : I2S WS.' in output)
assert ('P5 : GPIO0 bias-pull-up input-disable.' in output)
assert ('P6 : GPIO1 drive-open-drain.' in output)
assert ('P7 : GPIO2 bias-pull-down input-enable.' in output)
assert ('P8 : GPIO3 bias-disable.' in output)
@pytest.mark.buildconfigspec('cmd_pinmux')
@pytest.mark.boardspec('sandbox')
@ -73,12 +73,12 @@ def test_pinmux_status(u_boot_console):
assert (not 'pinctrl-gpio:' in output)
assert (not 'pinctrl:' in output)
assert ('SCL : I2C SCL.' in output)
assert ('SDA : I2C SDA.' in output)
assert ('TX : Uart TX.' in output)
assert ('RX : Uart RX.' in output)
assert ('W1 : 1-wire gpio.' in output)
assert ('GPIO0 : gpio bias-pull-up input-disable.' in output)
assert ('GPIO1 : gpio drive-open-drain.' in output)
assert ('GPIO2 : gpio bias-pull-down input-enable.' in output)
assert ('GPIO3 : gpio bias-disable.' in output)
assert ('P0 : UART TX.' in output)
assert ('P1 : UART RX.' in output)
assert ('P2 : I2S SCK.' in output)
assert ('P3 : I2S SD.' in output)
assert ('P4 : I2S WS.' in output)
assert ('P5 : GPIO0 bias-pull-up input-disable.' in output)
assert ('P6 : GPIO1 drive-open-drain.' in output)
assert ('P7 : GPIO2 bias-pull-down input-enable.' in output)
assert ('P8 : GPIO3 bias-disable.' in output)