Device specifications: * Qualcomm/Atheros QCA9533 v2 * 650/600/217 MHz (CPU/DDR/AHB) * 64 MB of RAM * 16 MB of SPI NOR flash (mx25l12805d) - 2x 7 MB available; but one of the 7 MB regions is the recovery image * 2x 10/100 Mbps Ethernet * 2T2R 2.4 GHz Wi-Fi * multi-color LED (controlled via red/green/blue GPIOs) * 1x GPIO-button (reset) * external h/w watchdog (enabled by default) * TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX) * 2x fast ethernet - eth0 + Label: Ethernet 1 + 24V passive POE (mode B) + used as WAN interface - eth1 + Label: Ethernet 2 + 802.3af POE + builtin switch port 2 + used as LAN interface * 12-24V 1A DC * external antennas Flashing instructions: The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be used to transfer the factory image to the u-boot when the device boots up. Signed-off-by: Sven Eckelmann <sven@narfation.org>
105 lines
4.2 KiB
Bash
105 lines
4.2 KiB
Bash
# The U-Boot loader with the datachk patchset for dualbooting requires image
|
|
# sizes and checksums to be provided in the U-Boot environment.
|
|
# The devices come with 2 main partitions - while one is active
|
|
# sysupgrade will flash the other. The boot order is changed to boot the
|
|
# newly flashed partition. If the new partition can't be booted due to
|
|
# upgrade failures the previously used partition is loaded.
|
|
|
|
platform_do_upgrade_dualboot_datachk() {
|
|
local tar_file="$1"
|
|
local restore_backup
|
|
local primary_kernel_mtd
|
|
|
|
local setenv_script="/tmp/fw_env_upgrade"
|
|
|
|
local inactive_mtd="$(find_mtd_index $PART_NAME)"
|
|
local inactive_offset="$(cat /sys/class/mtd/mtd${inactive_mtd}/offset)"
|
|
local total_size="$(cat /sys/class/mtd/mtd${inactive_mtd}/size)"
|
|
local flash_start_mem=0x9f000000
|
|
|
|
# detect to which flash region the new image is written to.
|
|
#
|
|
# 1. check what is the mtd index for the first flash region on this
|
|
# device
|
|
# 2. check if the target partition ("inactive") has the mtd index of
|
|
# the first flash region
|
|
#
|
|
# - when it is: the new bootseq will be 1,2 and the first region is
|
|
# modified
|
|
# - when it isnt: bootseq will be 2,1 and the second region is
|
|
# modified
|
|
#
|
|
# The detection has to be done via the hardcoded mtd partition because
|
|
# the current boot might be done with the fallback region. Let us
|
|
# assume that the current bootseq is 1,2. The bootloader detected that
|
|
# the image in flash region 1 is corrupt and thus switches to flash
|
|
# region 2. The bootseq in the u-boot-env is now still the same and
|
|
# the sysupgrade code can now only rely on the actual mtd indexes and
|
|
# not the bootseq variable to detect the currently booted flash
|
|
# region/image.
|
|
#
|
|
# In the above example, an implementation which uses bootseq ("1,2") to
|
|
# detect the currently booted image would assume that region 1 is booted
|
|
# and then overwrite the variables for the wrong flash region (aka the
|
|
# one which isn't modified). This could result in a device which doesn't
|
|
# boot anymore to Linux until it was reflashed with ap51-flash.
|
|
local next_boot_part="1"
|
|
case "$(board_name)" in
|
|
plasmacloud,pa300|\
|
|
plasmacloud,pa300e)
|
|
primary_kernel_mtd=3
|
|
;;
|
|
*)
|
|
echo "failed to detect primary kernel mtd partition for board"
|
|
return 1
|
|
;;
|
|
esac
|
|
[ "$inactive_mtd" = "$primary_kernel_mtd" ] || next_boot_part="2"
|
|
|
|
local board_dir=$(tar tf $tar_file | grep -m 1 '^sysupgrade-.*/$')
|
|
board_dir=${board_dir%/}
|
|
|
|
local kernel_length=$(tar xf $tar_file ${board_dir}/kernel -O | wc -c)
|
|
local rootfs_length=$(tar xf $tar_file ${board_dir}/root -O | wc -c)
|
|
# rootfs without EOF marker
|
|
rootfs_length=$((rootfs_length-4))
|
|
|
|
local kernel_md5=$(tar xf $tar_file ${board_dir}/kernel -O | md5sum); kernel_md5="${kernel_md5%% *}"
|
|
# md5 checksum of rootfs with EOF marker
|
|
local rootfs_md5=$(tar xf $tar_file ${board_dir}/root -O | dd bs=1 count=$rootfs_length | md5sum); rootfs_md5="${rootfs_md5%% *}"
|
|
|
|
#
|
|
# add tar support to get_image() to use default_do_upgrade() instead?
|
|
#
|
|
|
|
# take care of restoring a saved config
|
|
[ -n "$UPGRADE_BACKUP" ] && restore_backup="${MTD_CONFIG_ARGS} -j ${UPGRADE_BACKUP}"
|
|
|
|
mtd -q erase inactive
|
|
tar xf $tar_file ${board_dir}/root -O | mtd -n -p $kernel_length $restore_backup write - $PART_NAME
|
|
tar xf $tar_file ${board_dir}/kernel -O | mtd -n write - $PART_NAME
|
|
|
|
# prepare new u-boot env
|
|
if [ "$next_boot_part" = "1" ]; then
|
|
echo "bootseq 1,2" > $setenv_script
|
|
else
|
|
echo "bootseq 2,1" > $setenv_script
|
|
fi
|
|
|
|
printf "kernel_size_%i %i\n" $next_boot_part $((kernel_length / 1024)) >> $setenv_script
|
|
printf "vmlinux_start_addr 0x%08x\n" $((flash_start_mem + inactive_offset)) >> $setenv_script
|
|
printf "vmlinux_size 0x%08x\n" ${kernel_length} >> $setenv_script
|
|
printf "vmlinux_checksum %s\n" ${kernel_md5} >> $setenv_script
|
|
|
|
printf "rootfs_size_%i %i\n" $next_boot_part $(((total_size-kernel_length) / 1024)) >> $setenv_script
|
|
printf "rootfs_start_addr 0x%08x\n" $((flash_start_mem+inactive_offset+kernel_length)) >> $setenv_script
|
|
printf "rootfs_size 0x%08x\n" ${rootfs_length} >> $setenv_script
|
|
printf "rootfs_checksum %s\n" ${rootfs_md5} >> $setenv_script
|
|
|
|
# store u-boot env changes
|
|
mkdir -p /var/lock
|
|
fw_setenv -s $setenv_script || {
|
|
echo "failed to update U-Boot environment"
|
|
return 1
|
|
}
|
|
}
|