difos/target/linux/rtl838x/files-5.4/drivers/net/dsa/rtl838x_sw.c
Birger Koblitz df8e6be59a rtl838x: add new architecture
This adds support for the RTL838x Architecture.
SoCs of this type are used in managed and un-managed Switches and Routers
with 8-28 ports. Drivers are provided for SoC initialization, GPIOs, Flash,
Ethernet including a DSA switch driver and internal and external PHYs used
with these switches.

Supported SoCs:

	RTL8380M
	RTL8381M
	RTL8382M

The kernel will also boot on the following RTL839x SoCs, however driver
support apart from spi-nor is missing:

	RTL8390
	RTL8391
	RTL8393

The following PHYs are supported:

	RTL8214FC (Quad QSGMII multiplexing GMAC and SFP port)
	RTL8218B internal: internal PHY of the RTL838x chips
	RTL8318b external (QSGMII 8-port GMAC phy)
	RTL8382M SerDes for 2 SFP ports
	Initialization sequences for the PHYs are provided in the form of
	firmware files.

Flash driver supports 3 / 4 byte access

DSA switch driver supports VLANs, port isolation, STP and port mirroring.

The ALLNET ALL-SG8208M is supported as Proof of Concept:

	RTL8382M SoC
	1 MIPS 4KEc core @ 500MHz
	8 Internal PHYs (RTL8218B)
	128MB DRAM (Nanya NT5TU128MB)
	16MB NOR Flash (MXIC 25L128)
	8 GBEthernet ports with one green status LED each (SoC controlled)
	1 Power LED (not configurable)
	1 SYS LED (configurable)
	1 On-Off switch (not configurable)
	1 Reset button at the right behind right air-vent (not configurable)
	1 Reset button on front panel (configurable)
	12V 1A barrel connector
	1 serial header with populated standard pin connector and with markings
	  GND TX RX Vcc(3.3V), connection properties: 115200 8N1

To install, upload the sysupgrade image to the OEM webpage.

Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
2020-09-14 07:54:30 +02:00

2150 lines
56 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/iopoll.h>
#include <linux/mdio.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <linux/phylink.h>
#include <linux/phy_fixed.h>
#include <net/dsa.h>
#include <asm/mach-rtl838x/mach-rtl838x.h>
#include "rtl838x.h"
#define RTL8380_VERSION_A 'A'
#define RTL8390_VERSION_A 'A'
#define RTL8380_VERSION_B 'B'
DEFINE_MUTEX(smi_lock);
#define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
struct rtl838x_mib_desc {
unsigned int size;
unsigned int offset;
const char *name;
};
inline void rtl838x_mask_port_reg(u64 clear, u64 set, int reg)
{
sw_w32_mask((u32)clear, (u32)set, reg);
}
inline void rtl839x_mask_port_reg(u64 clear, u64 set, int reg)
{
sw_w32_mask((u32) (clear >> 32), (u32) (set >> 32), reg);
sw_w32_mask((u32) (clear & 0xffffffff), (u32) (set & 0xffffffff), reg + 4);
}
inline void rtl838x_set_port_reg(u64 set, int reg)
{
sw_w32(set, reg);
}
inline void rtl839x_set_port_reg(u64 set, int reg)
{
sw_w32(set >> 32, reg);
sw_w32(set & 0xffffffff, reg + 4);
}
inline u64 rtl838x_get_port_reg(int reg)
{
return ((u64) sw_r32(reg));
}
inline u64 rtl839x_get_port_reg(int reg)
{
u64 v = sw_r32(reg);
v <<= 32;
v |= sw_r32(reg + 4);
return v;
}
inline int rtl838x_stat_port_std_mib(int p)
{
return RTL838X_STAT_PORT_STD_MIB + (p << 8);
}
inline int rtl839x_stat_port_std_mib(int p)
{
return RTL839X_STAT_PORT_STD_MIB + (p << 8);
}
inline void rtl838x_mask_port_iso_ctrl(u64 clear, u64 set, int port)
{
sw_w32_mask(clear, set, RTL838X_PORT_ISO_CTRL(port));
}
inline void rtl839x_mask_port_iso_ctrl(u64 clear, u64 set, int port)
{
sw_w32_mask(clear >> 32, set >> 32, RTL839X_PORT_ISO_CTRL(port));
sw_w32_mask(clear & 0xffffffff, set & 0xffffffff,
RTL839X_PORT_ISO_CTRL(port) + 4);
}
inline void rtl838x_set_port_iso_ctrl(u64 set, int port)
{
sw_w32(set, RTL838X_PORT_ISO_CTRL(port));
}
inline void rtl839x_set_port_iso_ctrl(u64 set, int port)
{
sw_w32(set >> 32, RTL839X_PORT_ISO_CTRL(port));
sw_w32(set & 0xffffffff, RTL839X_PORT_ISO_CTRL(port) + 4);
}
inline void rtl838x_exec_tbl0_cmd(u32 cmd)
{
sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_0);
do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_0) & (1 << 15));
}
inline void rtl839x_exec_tbl0_cmd(u32 cmd)
{
sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_0);
do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_0) & (1 << 16));
}
inline void rtl838x_exec_tbl1_cmd(u32 cmd)
{
sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_1);
do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_1) & (1 << 15));
}
inline void rtl839x_exec_tbl1_cmd(u32 cmd)
{
sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_1);
do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_1) & (1 << 16));
}
inline int rtl838x_tbl_access_data_0(int i)
{
return RTL838X_TBL_ACCESS_DATA_0(i);
}
inline int rtl839x_tbl_access_data_0(int i)
{
return RTL839X_TBL_ACCESS_DATA_0(i);
}
static void rtl839x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
{
u32 cmd;
u64 v;
cmd = 1 << 16 /* Execute cmd */
| 0 << 15 /* Read */
| 0 << 12 /* Table type 0b000 */
| (vlan & 0xfff);
rtl839x_exec_tbl0_cmd(cmd);
v = sw_r32(RTL838X_TBL_ACCESS_DATA_0(0));
v <<= 32;
v |= sw_r32(RTL838X_TBL_ACCESS_DATA_0(1));
info->tagged_ports = v >> 11;
info->vlan_conf = (v & 0x7ff) << 2;
info->vlan_conf |= sw_r32(RTL838X_TBL_ACCESS_DATA_0(1)) >> 30;
cmd = 1 << 16 /* Execute cmd */
| 0 << 15 /* Read */
| 0 << 12 /* Table type 0b000 */
| (vlan & 0xfff);
rtl839x_exec_tbl1_cmd(cmd);
v = sw_r32(RTL838X_TBL_ACCESS_DATA_1(0));
v <<= 32;
v |= sw_r32(RTL838X_TBL_ACCESS_DATA_1(1));
info->untagged_ports = v >> 11;
}
static void rtl838x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
{
u32 cmd;
cmd = 1 << 15 /* Execute cmd */
| 1 << 14 /* Read */
| 0 << 12 /* Table type 0b00 */
| (vlan & 0xfff);
rtl838x_exec_tbl0_cmd(cmd);
info->tagged_ports = sw_r32(RTL838X_TBL_ACCESS_DATA_0(0));
info->vlan_conf = sw_r32(RTL838X_TBL_ACCESS_DATA_0(1));
cmd = 1 << 15 /* Execute cmd */
| 1 << 14 /* Read */
| 0 << 12 /* Table type 0b00 */
| (vlan & 0xfff);
rtl838x_exec_tbl1_cmd(cmd);
info->untagged_ports = sw_r32(RTL838X_TBL_ACCESS_DATA_1(0));
}
static void rtl839x_vlan_set_tagged(u32 vlan, u64 portmask, u32 conf)
{
u32 cmd = 1 << 16 /* Execute cmd */
| 1 << 15 /* Write */
| 0 << 12 /* Table type 0b00 */
| (vlan & 0xfff);
u64 v = portmask << 11;
v |= (conf >> 2) & 0x7ff;
sw_w64(v, RTL838X_TBL_ACCESS_DATA_0(0));
sw_w32(conf << 30, RTL838X_TBL_ACCESS_DATA_0(2));
rtl839x_exec_tbl0_cmd(cmd);
}
static void rtl838x_vlan_set_tagged(u32 vlan, u64 portmask, u32 conf)
{
u32 cmd = 1 << 15 /* Execute cmd */
| 0 << 14 /* Write */
| 0 << 12 /* Table type 0b00 */
| (vlan & 0xfff);
sw_w32(portmask, RTL838X_TBL_ACCESS_DATA_0(0));
sw_w32(conf, RTL838X_TBL_ACCESS_DATA_0(1));
rtl838x_exec_tbl0_cmd(cmd);
}
static void rtl839x_vlan_set_untagged(u32 vlan, u64 portmask)
{
u32 cmd = 1 << 16 /* Execute cmd */
| 1 << 15 /* Write */
| 0 << 12 /* Table type 0b00 */
| (vlan & 0xfff);
sw_w64(portmask << 11, RTL838X_TBL_ACCESS_DATA_1(0));
rtl839x_exec_tbl1_cmd(cmd);
}
static void rtl838x_vlan_set_untagged(u32 vlan, u64 portmask)
{
u32 cmd = 1 << 15 /* Execute cmd */
| 0 << 14 /* Write */
| 0 << 12 /* Table type 0b00 */
| (vlan & 0xfff);
sw_w32(portmask & 0x1fffffff, RTL838X_TBL_ACCESS_DATA_1(0));
rtl838x_exec_tbl1_cmd(cmd);
}
static inline int rtl838x_mac_force_mode_ctrl(int p)
{
return RTL838X_MAC_FORCE_MODE_CTRL + (p << 2);
}
static inline int rtl839x_mac_force_mode_ctrl(int p)
{
return RTL839X_MAC_FORCE_MODE_CTRL + (p << 2);
}
static const struct rtl838x_reg rtl838x_reg = {
.mask_port_reg = rtl838x_mask_port_reg,
.set_port_reg = rtl838x_set_port_reg,
.get_port_reg = rtl838x_get_port_reg,
.stat_port_rst = RTL838X_STAT_PORT_RST,
.stat_rst = RTL838X_STAT_RST,
.stat_port_std_mib = rtl838x_stat_port_std_mib,
.mask_port_iso_ctrl = rtl838x_mask_port_iso_ctrl,
.set_port_iso_ctrl = rtl838x_set_port_iso_ctrl,
.l2_ctrl_0 = RTL838X_L2_CTRL_0,
.l2_ctrl_1 = RTL838X_L2_CTRL_1,
.l2_port_aging_out = RTL838X_L2_PORT_AGING_OUT,
.smi_poll_ctrl = RTL838X_SMI_POLL_CTRL,
.l2_tbl_flush_ctrl = RTL838X_L2_TBL_FLUSH_CTRL,
.exec_tbl0_cmd = rtl838x_exec_tbl0_cmd,
.exec_tbl1_cmd = rtl838x_exec_tbl1_cmd,
.tbl_access_data_0 = rtl838x_tbl_access_data_0,
.isr_glb_src = RTL838X_ISR_GLB_SRC,
.isr_port_link_sts_chg = RTL838X_ISR_PORT_LINK_STS_CHG,
.imr_port_link_sts_chg = RTL838X_IMR_PORT_LINK_STS_CHG,
.imr_glb = RTL838X_IMR_GLB,
.vlan_tables_read = rtl838x_vlan_tables_read,
.vlan_set_tagged = rtl838x_vlan_set_tagged,
.vlan_set_untagged = rtl838x_vlan_set_untagged,
.mac_force_mode_ctrl = rtl838x_mac_force_mode_ctrl,
.rst_glb_ctrl = RTL838X_RST_GLB_CTRL_0,
};
static const struct rtl838x_reg rtl839x_reg = {
.mask_port_reg = rtl839x_mask_port_reg,
.set_port_reg = rtl839x_set_port_reg,
.get_port_reg = rtl839x_get_port_reg,
.stat_port_rst = RTL839X_STAT_PORT_RST,
.stat_rst = RTL839X_STAT_RST,
.stat_port_std_mib = rtl839x_stat_port_std_mib,
.mask_port_iso_ctrl = rtl839x_mask_port_iso_ctrl,
.set_port_iso_ctrl = rtl839x_set_port_iso_ctrl,
.l2_ctrl_0 = RTL839X_L2_CTRL_0,
.l2_ctrl_1 = RTL839X_L2_CTRL_1,
.l2_port_aging_out = RTL839X_L2_PORT_AGING_OUT,
.smi_poll_ctrl = RTL839X_SMI_PORT_POLLING_CTRL,
.l2_tbl_flush_ctrl = RTL839X_L2_TBL_FLUSH_CTRL,
.exec_tbl0_cmd = rtl839x_exec_tbl0_cmd,
.exec_tbl1_cmd = rtl839x_exec_tbl1_cmd,
.tbl_access_data_0 = rtl839x_tbl_access_data_0,
.isr_glb_src = RTL839X_ISR_GLB_SRC,
.isr_port_link_sts_chg = RTL839X_ISR_PORT_LINK_STS_CHG,
.imr_port_link_sts_chg = RTL839X_IMR_PORT_LINK_STS_CHG,
.imr_glb = RTL839X_IMR_GLB,
.vlan_tables_read = rtl839x_vlan_tables_read,
.vlan_set_tagged = rtl839x_vlan_set_tagged,
.vlan_set_untagged = rtl839x_vlan_set_untagged,
.mac_force_mode_ctrl = rtl839x_mac_force_mode_ctrl,
.rst_glb_ctrl = RTL839X_RST_GLB_CTRL,
};
static const struct rtl838x_mib_desc rtl838x_mib[] = {
MIB_DESC(2, 0xf8, "ifInOctets"),
MIB_DESC(2, 0xf0, "ifOutOctets"),
MIB_DESC(1, 0xec, "dot1dTpPortInDiscards"),
MIB_DESC(1, 0xe8, "ifInUcastPkts"),
MIB_DESC(1, 0xe4, "ifInMulticastPkts"),
MIB_DESC(1, 0xe0, "ifInBroadcastPkts"),
MIB_DESC(1, 0xdc, "ifOutUcastPkts"),
MIB_DESC(1, 0xd8, "ifOutMulticastPkts"),
MIB_DESC(1, 0xd4, "ifOutBroadcastPkts"),
MIB_DESC(1, 0xd0, "ifOutDiscards"),
MIB_DESC(1, 0xcc, ".3SingleCollisionFrames"),
MIB_DESC(1, 0xc8, ".3MultipleCollisionFrames"),
MIB_DESC(1, 0xc4, ".3DeferredTransmissions"),
MIB_DESC(1, 0xc0, ".3LateCollisions"),
MIB_DESC(1, 0xbc, ".3ExcessiveCollisions"),
MIB_DESC(1, 0xb8, ".3SymbolErrors"),
MIB_DESC(1, 0xb4, ".3ControlInUnknownOpcodes"),
MIB_DESC(1, 0xb0, ".3InPauseFrames"),
MIB_DESC(1, 0xac, ".3OutPauseFrames"),
MIB_DESC(1, 0xa8, "DropEvents"),
MIB_DESC(1, 0xa4, "tx_BroadcastPkts"),
MIB_DESC(1, 0xa0, "tx_MulticastPkts"),
MIB_DESC(1, 0x9c, "CRCAlignErrors"),
MIB_DESC(1, 0x98, "tx_UndersizePkts"),
MIB_DESC(1, 0x94, "rx_UndersizePkts"),
MIB_DESC(1, 0x90, "rx_UndersizedropPkts"),
MIB_DESC(1, 0x8c, "tx_OversizePkts"),
MIB_DESC(1, 0x88, "rx_OversizePkts"),
MIB_DESC(1, 0x84, "Fragments"),
MIB_DESC(1, 0x80, "Jabbers"),
MIB_DESC(1, 0x7c, "Collisions"),
MIB_DESC(1, 0x78, "tx_Pkts64Octets"),
MIB_DESC(1, 0x74, "rx_Pkts64Octets"),
MIB_DESC(1, 0x70, "tx_Pkts65to127Octets"),
MIB_DESC(1, 0x6c, "rx_Pkts65to127Octets"),
MIB_DESC(1, 0x68, "tx_Pkts128to255Octets"),
MIB_DESC(1, 0x64, "rx_Pkts128to255Octets"),
MIB_DESC(1, 0x60, "tx_Pkts256to511Octets"),
MIB_DESC(1, 0x5c, "rx_Pkts256to511Octets"),
MIB_DESC(1, 0x58, "tx_Pkts512to1023Octets"),
MIB_DESC(1, 0x54, "rx_Pkts512to1023Octets"),
MIB_DESC(1, 0x50, "tx_Pkts1024to1518Octets"),
MIB_DESC(1, 0x4c, "rx_StatsPkts1024to1518Octets"),
MIB_DESC(1, 0x48, "tx_Pkts1519toMaxOctets"),
MIB_DESC(1, 0x44, "rx_Pkts1519toMaxOctets"),
MIB_DESC(1, 0x40, "rxMacDiscards")
};
static irqreturn_t rtl838x_switch_irq(int irq, void *dev_id)
{
struct dsa_switch *ds = dev_id;
u32 status = sw_r32(RTL838X_ISR_GLB_SRC);
u32 ports = sw_r32(RTL838X_ISR_PORT_LINK_STS_CHG);
u32 link;
int i;
/* Clear status */
sw_w32(ports, RTL838X_ISR_PORT_LINK_STS_CHG);
pr_info("Link change: status: %x, ports %x\n", status, ports);
for (i = 0; i < 28; i++) {
if (ports & (1 << i)) {
link = sw_r32(RTL838X_MAC_LINK_STS);
if (link & (1 << i))
dsa_port_phylink_mac_change(ds, i, true);
else
dsa_port_phylink_mac_change(ds, i, false);
}
}
return IRQ_HANDLED;
}
static irqreturn_t rtl839x_switch_irq(int irq, void *dev_id)
{
struct dsa_switch *ds = dev_id;
u32 status = sw_r32(RTL839X_ISR_GLB_SRC);
u64 ports = sw_r64(RTL839X_ISR_PORT_LINK_STS_CHG);
u64 link;
int i;
/* Clear status */
sw_w64(ports, RTL839X_ISR_PORT_LINK_STS_CHG);
pr_info("Link change: status: %x, ports %llx\n", status, ports);
for (i = 0; i < 52; i++) {
if (ports & (1 << i)) {
link = sw_r64(RTL839X_MAC_LINK_STS);
if (link & (1 << i))
dsa_port_phylink_mac_change(ds, i, true);
else
dsa_port_phylink_mac_change(ds, i, false);
}
}
return IRQ_HANDLED;
}
int rtl8380_sds_power(int mac, int val)
{
u32 mode = (val == 1) ? 0x4 : 0x9;
u32 offset = (mac == 24) ? 5 : 0;
if ((mac != 24) && (mac != 26)) {
pr_err("%s: not a fibre port: %d\n", __func__, mac);
return -1;
}
sw_w32_mask(0x1f << offset, mode << offset, RTL838X_SDS_MODE_SEL);
rtl8380_sds_rst(mac);
return 0;
}
static int rtl838x_smi_wait_op(int timeout)
{
do {
timeout--;
udelay(10);
} while ((sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & 0x1) && (timeout >= 0));
if (timeout <= 0)
return -1;
return 0;
}
/*
* Write to a register in a page of the PHY
*/
int rtl838x_write_phy(u32 port, u32 page, u32 reg, u32 val)
{
u32 v;
u32 park_page;
val &= 0xffff;
if (port > 31 || page > 4095 || reg > 31)
return -ENOTSUPP;
mutex_lock(&smi_lock);
if (rtl838x_smi_wait_op(10000))
goto timeout;
sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
mdelay(10);
sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
v = reg << 20 | page << 3 | 0x4;
sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
if (rtl838x_smi_wait_op(10000))
goto timeout;
mutex_unlock(&smi_lock);
return 0;
timeout:
mutex_unlock(&smi_lock);
return -ETIMEDOUT;
}
int rtl839x_write_phy(u32 port, u32 page, u32 reg, u32 val)
{
u32 v;
int err = 0;
val &= 0xffff;
if (port > 63 || page > 4095 || reg > 31)
return -ENOTSUPP;
mutex_lock(&smi_lock);
/* Clear both port registers */
sw_w32(0, RTL839X_PHYREG_PORT_CTRL(0));
sw_w32(0, RTL839X_PHYREG_PORT_CTRL(0) + 4);
sw_w32_mask(0, 1 << port, RTL839X_PHYREG_PORT_CTRL(port));
sw_w32_mask(0xffff0000, val << 16, RTL839X_PHYREG_DATA_CTRL);
v = reg << 5 | page << 10 | ((page == 0x1fff) ? 0x1f : 0) << 23;
sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
sw_w32(0x1ff, RTL839X_PHYREG_CTRL);
v |= 1 << 3 | 1; /* Write operation and execute */
sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
do {
} while (sw_r32(RTL839X_PHYREG_ACCESS_CTRL) & 0x1);
if (sw_r32(RTL839X_PHYREG_ACCESS_CTRL) & 0x2)
err = -EIO;
mutex_unlock(&smi_lock);
return err;
}
/*
* Reads a register in a page from the PHY
*/
int rtl838x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
{
u32 v;
u32 park_page;
if (port > 31 || page > 4095 || reg > 31)
return -ENOTSUPP;
mutex_lock(&smi_lock);
if (rtl838x_smi_wait_op(10000))
goto timeout;
sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
v = reg << 20 | page << 3;
sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
if (rtl838x_smi_wait_op(10000))
goto timeout;
*val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;
mutex_unlock(&smi_lock);
return 0;
timeout:
mutex_unlock(&smi_lock);
return -ETIMEDOUT;
}
int rtl839x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
{
u32 v;
if (port > 63 || page > 4095 || reg > 31)
return -ENOTSUPP;
mutex_lock(&smi_lock);
sw_w32_mask(0xffff0000, port << 16, RTL839X_PHYREG_DATA_CTRL);
v = reg << 5 | page << 10 | ((page == 0x1fff) ? 0x1f : 0) << 23;
sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
sw_w32(0x1ff, RTL839X_PHYREG_CTRL);
v |= 1;
sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
do {
} while (sw_r32(RTL839X_PHYREG_ACCESS_CTRL) & 0x1);
*val = sw_r32(RTL839X_PHYREG_DATA_CTRL) & 0xffff;
mutex_unlock(&smi_lock);
return 0;
}
static int read_phy(u32 port, u32 page, u32 reg, u32 *val)
{
if (soc_info.family == RTL8390_FAMILY_ID)
return rtl839x_read_phy(port, page, reg, val);
else
return rtl838x_read_phy(port, page, reg, val);
}
static int write_phy(u32 port, u32 page, u32 reg, u32 val)
{
if (soc_info.family == RTL8390_FAMILY_ID)
return rtl839x_write_phy(port, page, reg, val);
else
return rtl838x_write_phy(port, page, reg, val);
}
/*
* Write to an mmd register of the PHY
*/
int rtl838x_write_mmd_phy(u32 port, u32 addr, u32 reg, u32 val)
{
u32 v;
pr_debug("MMD write: port %d, dev %d, reg %d, val %x\n", port, addr, reg, val);
val &= 0xffff;
mutex_lock(&smi_lock);
if (rtl838x_smi_wait_op(10000))
goto timeout;
sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
mdelay(10);
sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
sw_w32_mask(0x1f << 16, addr << 16, RTL838X_SMI_ACCESS_PHY_CTRL_3);
sw_w32_mask(0xffff, reg, RTL838X_SMI_ACCESS_PHY_CTRL_3);
/* mmd-access | write | cmd-start */
v = 1 << 1 | 1 << 2 | 1;
sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);
if (rtl838x_smi_wait_op(10000))
goto timeout;
mutex_unlock(&smi_lock);
return 0;
timeout:
mutex_unlock(&smi_lock);
return -ETIMEDOUT;
}
/*
* Read to an mmd register of the PHY
*/
int rtl838x_read_mmd_phy(u32 port, u32 addr, u32 reg, u32 *val)
{
u32 v;
mutex_lock(&smi_lock);
if (rtl838x_smi_wait_op(10000))
goto timeout;
sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
mdelay(10);
sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
v = addr << 16 | reg;
sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_3);
/* mmd-access | read | cmd-start */
v = 1 << 1 | 0 << 2 | 1;
sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);
if (rtl838x_smi_wait_op(10000))
goto timeout;
*val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;
mutex_unlock(&smi_lock);
return 0;
timeout:
mutex_unlock(&smi_lock);
return -ETIMEDOUT;
}
static void rtl8380_get_version(struct rtl838x_switch_priv *priv)
{
u32 rw_save, info_save;
u32 info;
if (priv->id)
pr_debug("SoC ID: %4x: %s\n", priv->id, soc_info.name);
else
pr_err("Unknown chip id (%04x)\n", priv->id);
rw_save = sw_r32(RTL838X_INT_RW_CTRL);
sw_w32(rw_save | 0x3, RTL838X_INT_RW_CTRL);
info_save = sw_r32(RTL838X_CHIP_INFO);
sw_w32(info_save | 0xA0000000, RTL838X_CHIP_INFO);
info = sw_r32(RTL838X_CHIP_INFO);
sw_w32(info_save, RTL838X_CHIP_INFO);
sw_w32(rw_save, RTL838X_INT_RW_CTRL);
if ((info & 0xFFFF) == 0x6275) {
if (((info >> 16) & 0x1F) == 0x1)
priv->version = RTL8380_VERSION_A;
else if (((info >> 16) & 0x1F) == 0x2)
priv->version = RTL8380_VERSION_B;
else
priv->version = RTL8380_VERSION_B;
} else {
priv->version = '-';
}
}
static void rtl8390_get_version(struct rtl838x_switch_priv *priv)
{
u32 info;
sw_w32_mask(0xf << 28, 0xa << 28, RTL839X_CHIP_INFO);
info = sw_r32(RTL839X_CHIP_INFO);
pr_info("Chip-Info: %x\n", info);
priv->version = RTL8390_VERSION_A;
}
int dsa_phy_read(struct dsa_switch *ds, int phy_addr, int phy_reg)
{
u32 val;
u32 offset = 0;
struct rtl838x_switch_priv *priv = ds->priv;
if (phy_addr >= 24 && phy_addr <= 27
&& priv->ports[24].phy == PHY_RTL838X_SDS) {
if (phy_addr == 26)
offset = 0x100;
val = sw_r32(MAPLE_SDS4_FIB_REG0r + offset + (phy_reg << 2)) & 0xffff;
return val;
}
read_phy(phy_addr, 0, phy_reg, &val);
return val;
}
int dsa_phy_write(struct dsa_switch *ds, int phy_addr, int phy_reg, u16 val)
{
u32 offset = 0;
struct rtl838x_switch_priv *priv = ds->priv;
if (phy_addr >= 24 && phy_addr <= 27
&& priv->ports[24].phy == PHY_RTL838X_SDS) {
if (phy_addr == 26)
offset = 0x100;
sw_w32(val, MAPLE_SDS4_FIB_REG0r + offset + (phy_reg << 2));
return 0;
}
return write_phy(phy_addr, 0, phy_reg, val);
}
static int rtl838x_mdio_read(struct mii_bus *bus, int addr, int regnum)
{
int ret;
struct rtl838x_switch_priv *priv = bus->priv;
ret = dsa_phy_read(priv->ds, addr, regnum);
return ret;
}
static int rtl838x_mdio_write(struct mii_bus *bus, int addr, int regnum,
u16 val)
{
struct rtl838x_switch_priv *priv = bus->priv;
return dsa_phy_write(priv->ds, addr, regnum, val);
}
static void rtl838x_enable_phy_polling(struct rtl838x_switch_priv *priv)
{
int i;
u64 v = 0;
msleep(1000);
/* Enable all ports with a PHY, including the SFP-ports */
for (i = 0; i < priv->cpu_port; i++) {
if (priv->ports[i].phy)
v |= 1 << i;
}
pr_info("%s: %16llx\n", __func__, v);
priv->r->set_port_reg(v, priv->r->smi_poll_ctrl);
/* PHY update complete */
if (priv->family_id == RTL8390_FAMILY_ID)
sw_w32_mask(1 << 7, 0, RTL839X_SMI_GLB_CTRL);
else
sw_w32_mask(0, 0x8000, RTL838X_SMI_GLB_CTRL);
}
void rtl839x_print_matrix(void)
{
volatile u64 *ptr = RTL838X_SW_BASE + RTL839X_PORT_ISO_CTRL(0);
int i;
for (i = 0; i < 52; i += 4)
pr_info("> %16llx %16llx %16llx %16llx\n",
ptr[i + 0], ptr[i + 1], ptr[i + 2], ptr[i + 3]);
pr_info("CPU_PORT> %16llx\n", ptr[52]);
}
void rtl838x_print_matrix(void)
{
unsigned volatile int *ptr = RTL838X_SW_BASE + RTL838X_PORT_ISO_CTRL(0);
int i;
if (soc_info.family == RTL8390_FAMILY_ID)
return rtl839x_print_matrix();
for (i = 0; i < 28; i += 8)
pr_info("> %8x %8x %8x %8x %8x %8x %8x %8x\n",
ptr[i + 0], ptr[i + 1], ptr[i + 2], ptr[i + 3], ptr[i + 4], ptr[i + 5],
ptr[i + 6], ptr[i + 7]);
pr_info("CPU_PORT> %8x\n", ptr[28]);
}
static void rtl838x_init_stats(struct rtl838x_switch_priv *priv)
{
mutex_lock(&priv->reg_mutex);
/* Enable statistics module: all counters plus debug.
* On RTL839x all counters are enabled by default
*/
if (priv->family_id == RTL8380_FAMILY_ID)
sw_w32_mask(0, 3, RTL838X_STAT_CTRL);
/* Reset statistics counters */
sw_w32_mask(0, 1, priv->r->stat_rst);
mutex_unlock(&priv->reg_mutex);
}
static int rtl838x_setup(struct dsa_switch *ds)
{
int i;
u64 port_bitmap = 0;
struct rtl838x_switch_priv *priv = ds->priv;
pr_info("%s called\n", __func__);
/* Disable MAC polling the PHY so that we can start configuration */
priv->r->set_port_reg(0, priv->r->smi_poll_ctrl);
for (i = 0; i < ds->num_ports; i++)
priv->ports[i].enable = false;
priv->ports[priv->cpu_port].enable = true;
/* Isolate ports from each other: traffic only CPU <-> port */
for (i = 0; i < priv->cpu_port; i++) {
if (priv->ports[i].phy) {
priv->r->set_port_iso_ctrl(1 << priv->cpu_port, i);
priv->r->mask_port_iso_ctrl(0, 1 << i, i);
port_bitmap |= 1 << i;
}
}
priv->r->set_port_iso_ctrl(port_bitmap, priv->cpu_port);
rtl838x_print_matrix();
rtl838x_init_stats(priv);
/* Enable MAC Polling PHY again */
rtl838x_enable_phy_polling(priv);
pr_info("Please wait until PHY is settled\n");
msleep(1000);
return 0;
}
static void rtl838x_get_strings(struct dsa_switch *ds,
int port, u32 stringset, u8 *data)
{
int i;
if (stringset != ETH_SS_STATS)
return;
for (i = 0; i < ARRAY_SIZE(rtl838x_mib); i++)
strncpy(data + i * ETH_GSTRING_LEN, rtl838x_mib[i].name,
ETH_GSTRING_LEN);
}
static void rtl838x_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
struct rtl838x_switch_priv *priv = ds->priv;
const struct rtl838x_mib_desc *mib;
int i;
u64 high;
for (i = 0; i < ARRAY_SIZE(rtl838x_mib); i++) {
mib = &rtl838x_mib[i];
data[i] = sw_r32(priv->r->stat_port_std_mib(port) + 252 - mib->offset);
if (mib->size == 2) {
high = sw_r32(priv->r->stat_port_std_mib(port) + 252 - mib->offset - 4);
data[i] |= high << 32;
}
}
}
static int rtl838x_get_sset_count(struct dsa_switch *ds, int port, int sset)
{
if (sset != ETH_SS_STATS)
return 0;
return ARRAY_SIZE(rtl838x_mib);
}
static enum dsa_tag_protocol
rtl838x_get_tag_protocol(struct dsa_switch *ds, int port)
{
/* The switch does not tag the frames, instead internally the header
* structure for each packet is tagged accordingly.
*/
return DSA_TAG_PROTO_TRAILER;
}
static int rtl838x_get_l2aging(struct rtl838x_switch_priv *priv)
{
int t = sw_r32(priv->r->l2_ctrl_1) & 0x7fffff;
pr_debug("RTL838X_L2_CTRL_1 %x\n", sw_r32(priv->r->l2_ctrl_1));
t = t * 128 / 625; /* Aging time in seconds. 0: L2 aging disabled */
pr_info("L2 AGING time: %d sec\n", t);
pr_info("Dynamic aging for ports: %x\n",
sw_r32(priv->r->l2_port_aging_out));
return t;
}
/*
* Set Switch L2 Aging time, t is time in milliseconds
* t = 0: aging is disabled
*/
static int rtl838x_set_l2aging(struct dsa_switch *ds, u32 t)
{
struct rtl838x_switch_priv *priv = ds->priv;
/* Convert time in mseconds to internal value */
if (t > 0x10000000) /* Set to maximum */
t = 0x7fffff;
else
t = ((t * 625) / 1000 + 127) / 128;
sw_w32(t, priv->r->l2_ctrl_1);
return 0;
}
static void rtl838x_fast_age(struct dsa_switch *ds, int port)
{
struct rtl838x_switch_priv *priv = ds->priv;
int s = priv->family_id == RTL8390_FAMILY_ID ? 2 : 0;
pr_info("FAST AGE port %d\n", port);
mutex_lock(&priv->reg_mutex);
/* RTL838X_L2_TBL_FLUSH_CTRL register bits, 839x has 1 bit larger
* port fields:
* 0-4: Replacing port
* 5-9: Flushed/replaced port
* 10-21: FVID
* 22: Entry types: 1: dynamic, 0: also static
* 23: Match flush port
* 24: Match FVID
* 25: Flush (0) or replace (1) L2 entries
* 26: Status of action (1: Start, 0: Done)
*/
sw_w32(1 << (26 + s) | 1 << (23 + s) | port << 5, priv->r->l2_tbl_flush_ctrl);
do { } while (sw_r32(priv->r->l2_tbl_flush_ctrl) & (1 << (26 + s)));
mutex_unlock(&priv->reg_mutex);
}
/*
* Applies the same hash algorithm as the one used currently by the ASIC
*/
static u32 rtl838x_hash(struct rtl838x_switch_priv *priv, u64 seed)
{
u32 h1, h2, h3, h;
if (sw_r32(priv->r->l2_ctrl_0) & 1) {
h1 = (seed >> 11) & 0x7ff;
h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f);
h2 = (seed >> 33) & 0x7ff;
h2 = ((h2 & 0x3f) << 5) | ((h2 >> 6) & 0x1f);
h3 = (seed >> 44) & 0x7ff;
h3 = ((h3 & 0x7f) << 4) | ((h3 >> 7) & 0xf);
h = h1 ^ h2 ^ h3 ^ ((seed >> 55) & 0x1ff);
h ^= ((seed >> 22) & 0x7ff) ^ (seed & 0x7ff);
} else {
h = ((seed >> 55) & 0x1ff) ^ ((seed >> 44) & 0x7ff)
^ ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff)
^ ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff);
}
return h;
}
static u64 rtl838x_hash_key(struct rtl838x_switch_priv *priv, u64 mac, u32 vid)
{
return rtl838x_hash(priv, mac << 12 | vid);
}
static u64 read_l2_entry_using_hash(u32 hash, u32 position, u32 *r)
{
u64 entry;
/* Search in SRAM, with hash and at position in hash bucket (0-3) */
u32 idx = (0 << 14) | (hash << 2) | position;
u32 cmd = 1 << 16 /* Execute cmd */
| 1 << 15 /* Read */
| 0 << 13 /* Table type 0b00 */
| (idx & 0x1fff);
sw_w32(cmd, RTL838X_TBL_ACCESS_L2_CTRL);
do { } while (sw_r32(RTL838X_TBL_ACCESS_L2_CTRL) & (1 << 16));
r[0] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(0));
r[1] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(1));
r[2] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(2));
entry = (((u64) r[1]) << 32) | (r[2] & 0xfffff000) | (r[0] & 0xfff);
return entry;
}
static u64 rtl838x_read_cam(int idx, u32 *r)
{
u64 entry;
u32 cmd = 1 << 16 /* Execute cmd */
| 1 << 15 /* Read */
| 1 << 13 /* Table type 0b01 */
| (idx & 0x3f);
sw_w32(cmd, RTL838X_TBL_ACCESS_L2_CTRL);
do { } while (sw_r32(RTL838X_TBL_ACCESS_L2_CTRL) & (1 << 16));
r[0] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(0));
r[1] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(1));
r[2] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(2));
entry = (((u64) r[1]) << 32) | (r[2] & 0xfffff000) | (r[0] & 0xfff);
return entry;
}
static void rtl838x_write_cam(int idx, u32 *r)
{
u32 cmd = 1 << 16 /* Execute cmd */
| 1 << 15 /* Read */
| 1 << 13 /* Table type 0b01 */
| (idx & 0x3f);
sw_w32(r[0], RTL838X_TBL_ACCESS_L2_DATA(0));
sw_w32(r[1], RTL838X_TBL_ACCESS_L2_DATA(1));
sw_w32(r[2], RTL838X_TBL_ACCESS_L2_DATA(2));
sw_w32(cmd, RTL838X_TBL_ACCESS_L2_CTRL);
do { } while (sw_r32(RTL838X_TBL_ACCESS_L2_CTRL) & (1 << 16));
}
static void rtl838x_write_hash(int idx, u32 *r)
{
u32 cmd = 1 << 16 /* Execute cmd */
| 0 << 15 /* Write */
| 0 << 13 /* Table type 0b00 */
| (idx & 0x1fff);
sw_w32(0, RTL838X_TBL_ACCESS_L2_DATA(0));
sw_w32(0, RTL838X_TBL_ACCESS_L2_DATA(1));
sw_w32(0, RTL838X_TBL_ACCESS_L2_DATA(2));
sw_w32(cmd, RTL838X_TBL_ACCESS_L2_CTRL);
do { } while (sw_r32(RTL838X_TBL_ACCESS_L2_CTRL) & (1 << 16));
}
static void dump_fdb(struct rtl838x_switch_priv *priv)
{
u32 r[3];
int i;
u8 mac[6];
u16 vid, rvid;
mutex_lock(&priv->reg_mutex);
for (i = 0; i < 8192; i++) {
read_l2_entry_using_hash(i >> 2, i & 0x3, r);
mac[0] = (r[1] >> 20);
mac[1] = (r[1] >> 12);
mac[2] = (r[1] >> 4);
mac[3] = (r[1] & 0xf) << 4 | (r[2] >> 28);
mac[4] = (r[2] >> 20);
mac[5] = (r[2] >> 12);
vid = r[0] & 0xfff;
rvid = r[2] & 0xfff;
if (!(r[0] >> 17)) /* Check for invalid entry */
continue;
pr_info("-> port %02d: %pM, vid: %d, rvid: %d\n",
(r[0] >> 12) & priv->port_mask, &mac[0], vid, rvid);
}
mutex_unlock(&priv->reg_mutex);
}
static int rtl838x_port_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
u32 r[3];
u8 mac[6];
u16 vid, rvid;
struct rtl838x_switch_priv *priv = ds->priv;
int i;
mutex_lock(&priv->reg_mutex);
for (i = 0; i < 8192; i++) {
read_l2_entry_using_hash(i >> 2, i & 0x3, r);
mac[0] = (r[1] >> 20);
mac[1] = (r[1] >> 12);
mac[2] = (r[1] >> 4);
mac[3] = (r[1] & 0xf) << 4 | (r[2] >> 28);
mac[4] = (r[2] >> 20);
mac[5] = (r[2] >> 12);
vid = r[0] & 0xfff;
rvid = r[2] & 0xfff;
if (!(r[0] >> 17)) /* Check for invalid entry */
continue;
if (port == ((r[0] >> 12) & 0x1f)) {
pr_info("-> mac %pM, vid: %d, rvid: %d\n", &mac[0], vid, rvid);
cb(mac, vid, (r[0] >> 19) & 1, data);
}
}
for (i = 0; i < 64; i++) {
rtl838x_read_cam(i, r);
mac[0] = (r[1] >> 20);
mac[1] = (r[1] >> 12);
mac[2] = (r[1] >> 4);
mac[3] = (r[1] & 0xf) << 4 | (r[2] >> 28);
mac[4] = (r[2] >> 20);
mac[5] = (r[2] >> 12);
vid = r[0] & 0xfff;
if (!(r[0] >> 17))
continue;
pr_info("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
if (port == ((r[0] >> 12) & priv->port_mask))
cb(mac, vid, (r[0] >> 19) & 1, data);
}
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int rtl838x_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct rtl838x_switch_priv *priv = ds->priv;
u64 mac = ether_addr_to_u64(addr);
u32 key = rtl838x_hash_key(priv, mac, vid);
int i;
u32 r[3];
u64 entry;
int idx = -1;
int err = 0;
pr_info("In %s, mac %llx, vid: %d, key: %x\n", __func__, mac, vid, key);
mutex_lock(&priv->reg_mutex);
for (i = 0; i < 4; i++) {
entry = read_l2_entry_using_hash(key, i, r);
if (!(r[0] >> 17)) /* Check for invalid entry */
continue;
if ((entry & 0x0fffffffffffffff) == ((mac << 12) | vid)) {
idx = (key << 2) | i;
break;
}
}
if (idx >= 0) {
r[0] = r[1] = r[2] = 0;
rtl838x_write_hash(idx, r);
goto out;
}
/* Check CAM for spillover from hash buckets */
for (i = 0; i < 64; i++) {
entry = rtl838x_read_cam(i, r);
if ((entry & 0x0fffffffffffffff) == ((mac << 12) | vid)) {
idx = i;
break;
}
}
if (idx >= 0) {
r[0] = r[1] = r[2] = 0;
rtl838x_write_cam(idx, r);
goto out;
}
err = -ENOENT;
out:
mutex_unlock(&priv->reg_mutex);
return err;
}
static int rtl838x_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct rtl838x_switch_priv *priv = ds->priv;
u64 mac = ether_addr_to_u64(addr);
u32 key = rtl838x_hash_key(priv, mac, vid);
int i;
u32 r[3];
int idx = -1;
u64 entry;
int err = 0;
mutex_lock(&priv->reg_mutex);
for (i = 0; i < 4; i++) {
entry = read_l2_entry_using_hash(key, i, r);
if (!(r[0] >> 17)) { /* Check for invalid entry */
idx = (key << 2) | i;
break;
}
if ((entry & 0x0fffffffffffffff) == ((mac << 12) | vid)) {
idx = (key << 2) | i;
break;
}
}
if (idx >= 0) {
// Found for del: R1 60000 R2 901b0e9 R3 12b0e000, 901b0e912b0e000
r[0] = 3 << 17 | port << 12; // Aging and port
r[0] |= vid;
r[1] = mac >> 16;
r[2] = (mac & 0xffff) << 12; /* rvid = 0 */
rtl838x_write_hash(idx, r);
goto out;
}
/* Hash bucket full, try CAM */
for (i = 0; i < 64; i++) {
entry = rtl838x_read_cam(i, r);
if (!(r[0] >> 17)) { /* Check for invalid entry */
if (idx < 0) /* First empty entry? */
idx = i;
break;
} else if ((entry & 0x0fffffffffffffff) == ((mac << 12) | vid)) {
pr_debug("Found entry in CAM\n");
idx = i;
break;
}
}
if (idx >= 0) {
r[0] = 3 << 17 | port << 12; // Aging
r[0] |= vid;
r[1] = mac >> 16;
r[2] = (mac & 0xffff) << 12; /* rvid = 0 */
rtl838x_write_cam(idx, r);
goto out;
}
err = -ENOTSUPP;
out:
mutex_unlock(&priv->reg_mutex);
return err;
}
static void rtl838x_port_stp_state_set(struct dsa_switch *ds, int port,
u8 state)
{
u32 cmd, msti = 0;
u32 port_state[4];
int index, bit, i;
struct rtl838x_switch_priv *priv = ds->priv;
int n = priv->family_id == RTL8380_FAMILY_ID ? 2 : 4;
pr_info("%s: port %d state %2x\n", __func__, port, state);
if (port >= priv->cpu_port)
return;
mutex_lock(&priv->reg_mutex);
index = n - (port >> 4) - 1;
bit = (port << 1) % 32;
if (priv->family_id == RTL8380_FAMILY_ID) {
cmd = 1 << 15 /* Execute cmd */
| 1 << 14 /* Read */
| 2 << 12 /* Table type 0b10 */
| (msti & 0xfff);
} else {
cmd = 1 << 16 /* Execute cmd */
| 0 << 15 /* Read */
| 5 << 12 /* Table type 0b101 */
| (msti & 0xfff);
}
priv->r->exec_tbl0_cmd(cmd);
for (i = 0; i < n; i++)
port_state[i] = sw_r32(priv->r->tbl_access_data_0(i));
pr_debug("Current state, port %d: %d\n", port, (port_state[index] >> bit) & 3);
port_state[index] &= ~(3 << bit);
switch (state) {
case BR_STATE_DISABLED: /* 0 */
port_state[index] |= (0 << bit);
break;
case BR_STATE_BLOCKING: /* 4 */
case BR_STATE_LISTENING: /* 1 */
port_state[index] |= (1 << bit);
break;
case BR_STATE_LEARNING: /* 2 */
port_state[index] |= (2 << bit);
break;
case BR_STATE_FORWARDING: /* 3*/
port_state[index] |= (3 << bit);
default:
break;
}
if (priv->family_id == RTL8380_FAMILY_ID) {
cmd = 1 << 15 /* Execute cmd */
| 0 << 14 /* Write */
| 2 << 12 /* Table type 0b10 */
| (msti & 0xfff);
} else {
cmd = 1 << 16 /* Execute cmd */
| 1 << 15 /* Write */
| 5 << 12 /* Table type 0b101 */
| (msti & 0xfff);
}
for (i = 0; i < n; i++)
sw_w32(port_state[i], priv->r->tbl_access_data_0(i));
priv->r->exec_tbl0_cmd(cmd);
mutex_unlock(&priv->reg_mutex);
}
static int rtl838x_port_mirror_add(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror,
bool ingress)
{
/* We support 4 mirror groups, one destination port per group */
int group;
struct rtl838x_switch_priv *priv = ds->priv;
pr_info("In %s\n", __func__);
for (group = 0; group < 4; group++) {
if (priv->mirror_group_ports[group] == mirror->to_local_port)
break;
}
if (group >= 4) {
for (group = 0; group < 4; group++) {
if (priv->mirror_group_ports[group] < 0)
break;
}
}
if (group >= 4)
return -ENOSPC;
pr_debug("Using group %d\n", group);
mutex_lock(&priv->reg_mutex);
/* Enable mirroring to port across VLANs (bit 11) */
sw_w32(1 << 11 | (mirror->to_local_port << 4) | 1, RTL838X_MIR_CTRL(group));
if (ingress && (sw_r32(RTL838X_MIR_SPM_CTRL(group)) & (1 << port))) {
mutex_unlock(&priv->reg_mutex);
return -EEXIST;
}
if ((!ingress) && (sw_r32(RTL838X_MIR_DPM_CTRL(group)) & (1 << port))) {
mutex_unlock(&priv->reg_mutex);
return -EEXIST;
}
if (ingress)
sw_w32_mask(0, 1 << port, RTL838X_MIR_SPM_CTRL(group));
else
sw_w32_mask(0, 1 << port, RTL838X_MIR_DPM_CTRL(group));
priv->mirror_group_ports[group] = mirror->to_local_port;
mutex_unlock(&priv->reg_mutex);
return 0;
}
static void rtl838x_port_mirror_del(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror)
{
int group = 0;
struct rtl838x_switch_priv *priv = ds->priv;
pr_info("In %s\n", __func__);
for (group = 0; group < 4; group++) {
if (priv->mirror_group_ports[group] == mirror->to_local_port)
break;
}
if (group >= 4)
return;
mutex_lock(&priv->reg_mutex);
if (mirror->ingress) {
/* Ingress, clear source port matrix */
sw_w32_mask(1 << port, 0, RTL838X_MIR_SPM_CTRL(group));
} else {
/* Egress, clear destination port matrix */
sw_w32_mask(1 << port, 0, RTL838X_MIR_DPM_CTRL(group));
}
if (!(sw_r32(RTL838X_MIR_DPM_CTRL(group)) || sw_r32(RTL838X_MIR_DPM_CTRL(group)))) {
priv->mirror_group_ports[group] = -1;
sw_w32(0, RTL838X_MIR_CTRL(group));
}
mutex_unlock(&priv->reg_mutex);
}
void rtl838x_vlan_profile_dump(int index)
{
u32 profile;
if (index < 0 || index > 7)
return;
profile = sw_r32(RTL838X_VLAN_PROFILE(index));
pr_info("VLAN %d: L2 learning: %d, L2 Unknown MultiCast Field %x",
index, profile & 1, (profile >> 1) & 0x1ff);
pr_info(" IPv4 Unkn MultiCast Field %x, IPv6 Unkn MultiCast Field: %x",
(profile >> 10) & 0x1ff, (profile >> 19) & 0x1ff);
}
static int rtl838x_vlan_filtering(struct dsa_switch *ds, int port,
bool vlan_filtering)
{
struct rtl838x_switch_priv *priv = ds->priv;
pr_info("%s: port %d\n", __func__, port);
mutex_lock(&priv->reg_mutex);
if (vlan_filtering) {
/* Enable ingress and egress filtering */
if (port != priv->cpu_port) {
if (port < 16) {
sw_w32_mask(0b10 << (port << 1),
0b01 << (port << 1),
RTL838X_VLAN_PORT_IGR_FLTR_0);
} else {
sw_w32_mask(0b10 << ((port - 16) << 1),
0b01 << ((port - 16) << 1),
RTL838X_VLAN_PORT_IGR_FLTR_1);
}
}
sw_w32_mask(0, 1 << port, RTL838X_VLAN_PORT_EGR_FLTR);
} else {
/* Disable ingress and egress filtering */
if (port != priv->cpu_port) {
if (port < 16) {
sw_w32_mask(0b11 << (port << 1),
0,
RTL838X_VLAN_PORT_IGR_FLTR_0);
} else {
sw_w32_mask(0b11 << ((port - 16) << 1),
0,
RTL838X_VLAN_PORT_IGR_FLTR_1);
}
}
sw_w32_mask(1 << port, 0, RTL838X_VLAN_PORT_EGR_FLTR);
}
/* We need to do something to the CPU-Port, too */
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int rtl838x_vlan_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct rtl838x_vlan_info info;
struct rtl838x_switch_priv *priv = ds->priv;
pr_info("%s: port %d\n", __func__, port);
mutex_lock(&priv->reg_mutex);
priv->r->vlan_tables_read(1, &info);
pr_info("Tagged ports %llx, untag %llx, prof %x, MC# %d, UC# %d, MSTI %x\n",
info.tagged_ports, info.untagged_ports, info.vlan_conf & 7,
(info.vlan_conf & 8) >> 3, (info.vlan_conf & 16) >> 4,
(info.vlan_conf & 0x3e0) >> 5);
mutex_unlock(&priv->reg_mutex);
return 0;
}
static void rtl838x_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct rtl838x_vlan_info info;
struct rtl838x_switch_priv *priv = ds->priv;
int v;
u64 portmask;
pr_info("%s port %d, vid_end %d, vid_end %d, flags %x\n", __func__,
port, vlan->vid_begin, vlan->vid_end, vlan->flags);
if (vlan->vid_begin > 4095 || vlan->vid_end > 4095) {
dev_err(priv->dev, "VLAN out of range: %d - %d",
vlan->vid_begin, vlan->vid_end);
return;
}
mutex_lock(&priv->reg_mutex);
if (vlan->flags & BRIDGE_VLAN_INFO_PVID) {
for (v = vlan->vid_begin; v <= vlan->vid_end; v++) {
/* Set both inner and outer PVID of the port */
sw_w32((v << 16) | v, RTL838X_VLAN_PORT_PB_VLAN(port));
}
}
if (vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED) {
for (v = vlan->vid_begin; v <= vlan->vid_end; v++) {
/* Get untagged port memberships of this vlan */
priv->r->vlan_tables_read(v, &info);
portmask = info.untagged_ports | (1 << port);
pr_debug("Untagged ports, VLAN %d: %llx\n", v, portmask);
priv->r->vlan_set_untagged(v, portmask);
}
} else {
for (v = vlan->vid_begin; v <= vlan->vid_end; v++) {
/* Get tagged port memberships of this vlan */
priv->r->vlan_tables_read(v, &info);
portmask = info.tagged_ports | (1 << port);
pr_debug("Tagged ports, VLAN %d: %llx\n", v, portmask);
priv->r->vlan_set_tagged(v, portmask, info.vlan_conf);
}
}
mutex_unlock(&priv->reg_mutex);
}
static int rtl838x_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct rtl838x_vlan_info info;
struct rtl838x_switch_priv *priv = ds->priv;
int v;
u64 portmask;
pr_info("%s: port %d, vid_end %d, vid_end %d, flags %x\n", __func__,
port, vlan->vid_begin, vlan->vid_end, vlan->flags);
if (vlan->vid_begin > 4095 || vlan->vid_end > 4095) {
dev_err(priv->dev, "VLAN out of range: %d - %d",
vlan->vid_begin, vlan->vid_end);
return -ENOTSUPP;
}
mutex_lock(&priv->reg_mutex);
for (v = vlan->vid_begin; v <= vlan->vid_end; v++) {
/* Reset both inner and out PVID of the port */
sw_w32(0, RTL838X_VLAN_PORT_PB_VLAN(port));
if (vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED) {
/* Get untagged port memberships of this vlan */
priv->r->vlan_tables_read(v, &info);
portmask = info.untagged_ports & (~(1 << port));
pr_info("Untagged ports, VLAN %d: %llx\n", v, portmask);
priv->r->vlan_set_untagged(v, portmask);
}
/* Get tagged port memberships of this vlan */
priv->r->vlan_tables_read(v, &info);
portmask = info.tagged_ports & (~(1 << port));
pr_info("Tagged ports, VLAN %d: %llx\n", v, portmask);
priv->r->vlan_set_tagged(v, portmask, info.vlan_conf);
}
mutex_unlock(&priv->reg_mutex);
return 0;
}
static void rtl838x_port_bridge_leave(struct dsa_switch *ds, int port,
struct net_device *bridge)
{
struct rtl838x_switch_priv *priv = ds->priv;
u64 port_bitmap = 1 << priv->cpu_port;
int i;
pr_info("%s %x: %d", __func__, (u32)priv, port);
mutex_lock(&priv->reg_mutex);
for (i = 0; i < ds->num_ports; i++) {
/* Remove this port from the port matrix of the other ports
* in the same bridge. If the port is disabled, port matrix
* is kept and not being setup until the port becomes enabled.
* And the other port's port matrix cannot be broken when the
* other port is still a VLAN-aware port.
*/
if (dsa_is_user_port(ds, i) && i != port) {
if (dsa_to_port(ds, i)->bridge_dev != bridge)
continue;
if (priv->ports[i].enable)
priv->r->mask_port_iso_ctrl(1 << port, 0, i);
priv->ports[i].pm |= 1 << port;
port_bitmap &= ~(1 << i);
}
}
/* Add all other ports to this port matrix. */
if (priv->ports[port].enable)
priv->r->mask_port_iso_ctrl(0, port_bitmap, port);
priv->ports[port].pm &= ~port_bitmap;
mutex_unlock(&priv->reg_mutex);
rtl838x_print_matrix();
}
static int rtl838x_port_bridge_join(struct dsa_switch *ds, int port,
struct net_device *bridge)
{
struct rtl838x_switch_priv *priv = ds->priv;
u64 port_bitmap = 1 << priv->cpu_port;
int i;
pr_info("%s %x: %d %llx", __func__, (u32)priv, port, port_bitmap);
mutex_lock(&priv->reg_mutex);
for (i = 0; i < ds->num_ports; i++) {
/* Add this port to the port matrix of the other ports in the
* same bridge. If the port is disabled, port matrix is kept
* and not being setup until the port becomes enabled.
*/
if (dsa_is_user_port(ds, i) && i != port) {
if (dsa_to_port(ds, i)->bridge_dev != bridge)
continue;
if (priv->ports[i].enable)
priv->r->mask_port_iso_ctrl(0, 1 << port, i);
priv->ports[i].pm |= 1 << port;
port_bitmap |= 1 << i;
}
}
/* Add all other ports to this port matrix. */
if (priv->ports[port].enable) {
priv->r->mask_port_iso_ctrl(0, 1 << port, priv->cpu_port);
priv->r->mask_port_iso_ctrl(0, port_bitmap, port);
}
priv->ports[port].pm |= port_bitmap;
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int rtl838x_port_enable(struct dsa_switch *ds, int port,
struct phy_device *phydev)
{
struct rtl838x_switch_priv *priv = ds->priv;
pr_info("%s: %x %d", __func__, (u32) priv, port);
priv->ports[port].enable = true;
if (dsa_is_cpu_port(ds, port))
return 0;
/* add port to switch mask of CPU_PORT */
priv->r->mask_port_iso_ctrl(0, 1 << port, priv->cpu_port);
/* add all other ports in the same bridge to switch mask of port */
priv->r->mask_port_iso_ctrl(0, priv->ports[port].pm, port);
/* enable PHY polling */
sw_w32_mask(0, 1 << port, RTL838X_SMI_POLL_CTRL);
return 0;
}
static void rtl838x_port_disable(struct dsa_switch *ds, int port)
{
struct rtl838x_switch_priv *priv = ds->priv;
pr_info("%s %x: %d", __func__, (u32)priv, port);
/* you can only disable user ports */
if (!dsa_is_user_port(ds, port))
return;
/* remove port from switch mask of CPU_PORT */
priv->r->mask_port_iso_ctrl(1 << port, 0, priv->cpu_port);
/* remove all other ports in the same bridge from switch mask of port */
priv->r->mask_port_iso_ctrl(priv->ports[port].pm, 0, port);
priv->ports[port].enable = false;
/* disable PHY polling */
sw_w32_mask(1 << port, 0, RTL838X_SMI_POLL_CTRL);
}
static int rtl838x_get_mac_eee(struct dsa_switch *ds, int port,
struct ethtool_eee *e)
{
struct rtl838x_switch_priv *priv = ds->priv;
pr_info("%s: port %d", __func__, port);
e->supported = SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full;
if (sw_r32(priv->r->mac_force_mode_ctrl(port)) & (1 << 9))
e->advertised |= ADVERTISED_100baseT_Full;
if (sw_r32(priv->r->mac_force_mode_ctrl(port)) & (1 << 10))
e->advertised |= ADVERTISED_1000baseT_Full;
e->eee_enabled = priv->ports[port].eee_enabled;
pr_info("enabled: %d, active %x\n", e->eee_enabled, e->advertised);
if (sw_r32(RTL838X_MAC_EEE_ABLTY) & (1 << port)) {
e->lp_advertised = ADVERTISED_100baseT_Full;
e->lp_advertised |= ADVERTISED_1000baseT_Full;
}
e->eee_active = !!(e->advertised & e->lp_advertised);
pr_info("active: %d, lp %x\n", e->eee_active, e->lp_advertised);
return 0;
}
static int rtl838x_set_mac_eee(struct dsa_switch *ds, int port,
struct ethtool_eee *e)
{
struct rtl838x_switch_priv *priv = ds->priv;
pr_info("%s: port %d", __func__, port);
if (e->eee_enabled) {
pr_info("Globally enabling EEE\n");
sw_w32_mask(0x4, 0, RTL838X_SMI_GLB_CTRL);
}
if (e->eee_enabled) {
pr_info("Enabling EEE for MAC %d\n", port);
sw_w32_mask(0, 3 << 9, priv->r->mac_force_mode_ctrl(port));
sw_w32_mask(0, 1 << port, RTL838X_EEE_PORT_TX_EN);
sw_w32_mask(0, 1 << port, RTL838X_EEE_PORT_RX_EN);
priv->ports[port].eee_enabled = true;
e->eee_enabled = true;
} else {
pr_info("Disabling EEE for MAC %d\n", port);
sw_w32_mask(3 << 9, 0, priv->r->mac_force_mode_ctrl(port));
sw_w32_mask(1 << port, 0, RTL838X_EEE_PORT_TX_EN);
sw_w32_mask(1 << port, 0, RTL838X_EEE_PORT_RX_EN);
priv->ports[port].eee_enabled = false;
e->eee_enabled = false;
}
return 0;
}
static void rtl838x_phylink_mac_config(struct dsa_switch *ds, int port,
unsigned int mode,
const struct phylink_link_state *state)
{
struct rtl838x_switch_priv *priv = ds->priv;
u32 reg;
pr_info("%s port %d, mode %x\n", __func__, port, mode);
if (port == priv->cpu_port) {
/* Set Speed, duplex, flow control
* FORCE_EN | LINK_EN | NWAY_EN | DUP_SEL
* | SPD_SEL = 0b10 | FORCE_FC_EN | PHY_MASTER_SLV_MANUAL_EN
* | MEDIA_SEL
*/
if (priv->family_id == RTL8380_FAMILY_ID) {
sw_w32(0x6192F, priv->r->mac_force_mode_ctrl(priv->cpu_port));
/* allow CRC errors on CPU-port */
sw_w32_mask(0, 0x8, RTL838X_MAC_PORT_CTRL(priv->cpu_port));
} else {
sw_w32_mask(0, 3, priv->r->mac_force_mode_ctrl(priv->cpu_port));
}
return;
}
reg = sw_r32(priv->r->mac_force_mode_ctrl(port));
if (mode == MLO_AN_PHY) {
pr_info("PHY autonegotiates\n");
reg |= 1 << 2;
sw_w32(reg, priv->r->mac_force_mode_ctrl(port));
return;
}
if (mode != MLO_AN_FIXED)
pr_info("Not fixed\n");
/* Clear id_mode_dis bit, and the existing port mode, let
* RGMII_MODE_EN bet set by mac_link_{up,down}
*/
reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);
if (state->pause & MLO_PAUSE_TXRX_MASK) {
if (state->pause & MLO_PAUSE_TX)
reg |= TX_PAUSE_EN;
reg |= RX_PAUSE_EN;
}
reg &= ~(3 << 4);
switch (state->speed) {
case SPEED_1000:
reg |= 2 << 4;
break;
case SPEED_100:
reg |= 1 << 4;
break;
}
reg &= ~(DUPLEX_FULL | FORCE_LINK_EN);
if (state->link)
reg |= FORCE_LINK_EN;
if (state->duplex == DUPLEX_FULL)
reg |= DUPLX_MODE;
// Disable AN
reg &= ~(1 << 2);
sw_w32(reg, priv->r->mac_force_mode_ctrl(port));
}
static void rtl838x_phylink_mac_link_down(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface)
{
/* Stop TX/RX to port */
sw_w32_mask(0x03, 0, RTL838X_MAC_PORT_CTRL(port));
}
static void rtl838x_phylink_mac_link_up(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface,
struct phy_device *phydev)
{
/* Restart TX/RX to port */
sw_w32_mask(0, 0x03, RTL838X_MAC_PORT_CTRL(port));
}
static void rtl838x_phylink_validate(struct dsa_switch *ds, int port,
unsigned long *supported,
struct phylink_link_state *state)
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
pr_info("In %s port %d", __func__, port);
if (!phy_interface_mode_is_rgmii(state->interface) &&
state->interface != PHY_INTERFACE_MODE_1000BASEX &&
state->interface != PHY_INTERFACE_MODE_MII &&
state->interface != PHY_INTERFACE_MODE_REVMII &&
state->interface != PHY_INTERFACE_MODE_GMII &&
state->interface != PHY_INTERFACE_MODE_QSGMII &&
state->interface != PHY_INTERFACE_MODE_INTERNAL &&
state->interface != PHY_INTERFACE_MODE_SGMII) {
bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
dev_err(ds->dev,
"Unsupported interface: %d for port %d\n",
state->interface, port);
return;
}
/* switch chip-id? if (priv->id == 0x8382) */
/* Allow all the expected bits */
phylink_set(mask, Autoneg);
phylink_set_port_modes(mask);
phylink_set(mask, Pause);
phylink_set(mask, Asym_Pause);
/* With the exclusion of MII and Reverse MII, we support Gigabit,
* including Half duplex
*/
if (state->interface != PHY_INTERFACE_MODE_MII &&
state->interface != PHY_INTERFACE_MODE_REVMII) {
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseT_Half);
}
/* On both the 8380 and 8382, ports 24-27 are SFP ports */
if (port >= 24 && port <= 27)
phylink_set(mask, 1000baseX_Full);
phylink_set(mask, 10baseT_Half);
phylink_set(mask, 10baseT_Full);
phylink_set(mask, 100baseT_Half);
phylink_set(mask, 100baseT_Full);
bitmap_and(supported, supported, mask,
__ETHTOOL_LINK_MODE_MASK_NBITS);
bitmap_and(state->advertising, state->advertising, mask,
__ETHTOOL_LINK_MODE_MASK_NBITS);
}
static int rtl838x_phylink_mac_link_state(struct dsa_switch *ds, int port,
struct phylink_link_state *state)
{
struct rtl838x_switch_priv *priv = ds->priv;
u32 speed;
if (port < 0 || port > priv->cpu_port)
return -EINVAL;
state->link = 0;
if (sw_r32(RTL838X_MAC_LINK_STS) & (1 << port))
state->link = 1;
state->duplex = 0;
if (sw_r32(RTL838X_MAC_LINK_DUP_STS) & (1 << port))
state->duplex = 1;
speed = sw_r32(RTL838X_MAC_LINK_SPD_STS(port));
speed >>= (port % 16) << 1;
switch (speed & 0x3) {
case 0:
state->speed = SPEED_10;
break;
case 1:
state->speed = SPEED_100;
break;
case 2:
state->speed = SPEED_1000;
break;
case 3:
if (port == 24 || port == 26) /* Internal serdes */
state->speed = SPEED_2500;
else
state->speed = SPEED_100; /* Is in fact 500Mbit */
}
state->pause &= (MLO_PAUSE_RX | MLO_PAUSE_TX);
if (sw_r32(RTL838X_MAC_RX_PAUSE_STS) & (1 << port))
state->pause |= MLO_PAUSE_RX;
if (sw_r32(RTL838X_MAC_TX_PAUSE_STS) & (1 << port))
state->pause |= MLO_PAUSE_TX;
return 1;
}
static int rtl838x_mdio_probe(struct rtl838x_switch_priv *priv)
{
struct device *dev = priv->dev;
struct device_node *dn, *mii_np = dev->of_node;
struct mii_bus *bus;
int ret;
u32 pn;
pr_info("In %s\n", __func__);
mii_np = of_find_compatible_node(NULL, NULL, "realtek,rtl838x-mdio");
if (mii_np) {
pr_info("Found compatible MDIO node!\n");
} else {
dev_err(priv->dev, "no %s child node found", "mdio-bus");
return -ENODEV;
}
priv->mii_bus = of_mdio_find_bus(mii_np);
if (!priv->mii_bus) {
pr_info("Deferring probe of mdio bus\n");
return -EPROBE_DEFER;
}
if (!of_device_is_available(mii_np))
ret = -ENODEV;
bus = devm_mdiobus_alloc(priv->ds->dev);
if (!bus)
return -ENOMEM;
bus->name = "rtl838x slave mii";
bus->read = &rtl838x_mdio_read;
bus->write = &rtl838x_mdio_write;
snprintf(bus->id, MII_BUS_ID_SIZE, "%s-%d", bus->name, dev->id);
bus->parent = dev;
priv->ds->slave_mii_bus = bus;
priv->ds->slave_mii_bus->priv = priv;
ret = mdiobus_register(priv->ds->slave_mii_bus);
if (ret && mii_np) {
of_node_put(dn);
return ret;
}
dn = mii_np;
for_each_node_by_name(dn, "ethernet-phy") {
if (of_property_read_u32(dn, "reg", &pn))
continue;
// Check for the integrated SerDes of the RTL8380M first
if (of_property_read_bool(dn, "phy-is-integrated")
&& priv->id == 0x8380 && pn >= 24) {
pr_info("----> FÓUND A SERDES\n");
priv->ports[pn].phy = PHY_RTL838X_SDS;
continue;
}
if (of_property_read_bool(dn, "phy-is-integrated")
&& !of_property_read_bool(dn, "sfp")) {
priv->ports[pn].phy = PHY_RTL8218B_INT;
continue;
}
if (!of_property_read_bool(dn, "phy-is-integrated")
&& of_property_read_bool(dn, "sfp")) {
priv->ports[pn].phy = PHY_RTL8214FC;
continue;
}
if (!of_property_read_bool(dn, "phy-is-integrated")
&& !of_property_read_bool(dn, "sfp")) {
priv->ports[pn].phy = PHY_RTL8218B_EXT;
continue;
}
}
/* Disable MAC polling the PHY so that we can start configuration */
sw_w32(0x00000000, RTL838X_SMI_POLL_CTRL);
/* Enable PHY control via SoC */
sw_w32_mask(0, 1 << 15, RTL838X_SMI_GLB_CTRL);
/* Power on fibre ports and reset them if necessary */
if (priv->ports[24].phy == PHY_RTL838X_SDS) {
pr_info("Powering on fibre ports & reset\n");
rtl8380_sds_power(24, 1);
rtl8380_sds_power(26, 1);
}
pr_info("%s done\n", __func__);
return 0;
}
static const struct dsa_switch_ops rtl838x_switch_ops = {
.get_tag_protocol = rtl838x_get_tag_protocol,
.setup = rtl838x_setup,
.port_vlan_filtering = rtl838x_vlan_filtering,
.port_vlan_prepare = rtl838x_vlan_prepare,
.port_vlan_add = rtl838x_vlan_add,
.port_vlan_del = rtl838x_vlan_del,
.port_bridge_join = rtl838x_port_bridge_join,
.port_bridge_leave = rtl838x_port_bridge_leave,
.port_stp_state_set = rtl838x_port_stp_state_set,
.set_ageing_time = rtl838x_set_l2aging,
.port_fast_age = rtl838x_fast_age,
.port_fdb_add = rtl838x_port_fdb_add,
.port_fdb_del = rtl838x_port_fdb_del,
.port_fdb_dump = rtl838x_port_fdb_dump,
.port_enable = rtl838x_port_enable,
.port_disable = rtl838x_port_disable,
.port_mirror_add = rtl838x_port_mirror_add,
.port_mirror_del = rtl838x_port_mirror_del,
.phy_read = dsa_phy_read,
.phy_write = dsa_phy_write,
.get_strings = rtl838x_get_strings,
.get_ethtool_stats = rtl838x_get_ethtool_stats,
.get_sset_count = rtl838x_get_sset_count,
.phylink_validate = rtl838x_phylink_validate,
.phylink_mac_link_state = rtl838x_phylink_mac_link_state,
.phylink_mac_config = rtl838x_phylink_mac_config,
.phylink_mac_link_down = rtl838x_phylink_mac_link_down,
.phylink_mac_link_up = rtl838x_phylink_mac_link_up,
.set_mac_eee = rtl838x_set_mac_eee,
.get_mac_eee = rtl838x_get_mac_eee,
};
static int __init rtl838x_sw_probe(struct platform_device *pdev)
{
int err = 0, i;
struct rtl838x_switch_priv *priv;
struct device *dev = &pdev->dev;
pr_info("Probing RTL838X switch device\n");
if (!pdev->dev.of_node) {
dev_err(dev, "No DT found\n");
return -EINVAL;
}
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->ds = dsa_switch_alloc(dev, DSA_MAX_PORTS);
if (!priv->ds)
return -ENOMEM;
priv->ds->dev = dev;
priv->ds->priv = priv;
priv->ds->ops = &rtl838x_switch_ops;
priv->dev = dev;
priv->family_id = soc_info.family;
priv->id = soc_info.id;
if (soc_info.family == RTL8380_FAMILY_ID) {
priv->cpu_port = RTL838X_CPU_PORT;
priv->port_mask = 0x1f;
priv->r = &rtl838x_reg;
priv->ds->num_ports = 30;
rtl8380_get_version(priv);
} else {
priv->cpu_port = RTL839X_CPU_PORT;
priv->port_mask = 0x3f;
priv->r = &rtl839x_reg;
priv->ds->num_ports = 53;
rtl8390_get_version(priv);
}
pr_info("Chip version %c\n", priv->version);
err = rtl838x_mdio_probe(priv);
if (err) {
/* Probing fails the 1st time because of missing ethernet driver
* initialization. Use this to disable traffic in case the bootloader left if on
*/
return err;
}
err = dsa_register_switch(priv->ds);
if (err) {
dev_err(dev, "Error registering switch: %d\n", err);
return err;
}
/* Enable link and media change interrupts. Are the SERDES masks needed? */
sw_w32_mask(0, 3, priv->r->isr_glb_src);
/* ... for all ports */
priv->r->set_port_reg(0xffffffffffffffff, priv->r->isr_port_link_sts_chg);
priv->r->set_port_reg(0xffffffffffffffff, priv->r->imr_port_link_sts_chg);
priv->link_state_irq = 20;
if (priv->family_id == RTL8380_FAMILY_ID) {
err = request_irq(priv->link_state_irq, rtl838x_switch_irq,
IRQF_SHARED, "rtl8838x-link-state", priv->ds);
} else {
err = request_irq(priv->link_state_irq, rtl839x_switch_irq,
IRQF_SHARED, "rtl8838x-link-state", priv->ds);
}
if (err) {
dev_err(dev, "Error setting up switch interrupt.\n");
/* Need to free allocated switch here */
}
/* Enable interrupts for switch */
sw_w32(0x1, priv->r->imr_glb);
rtl838x_get_l2aging(priv);
/* Clear all destination ports for mirror groups */
for (i = 0; i < 4; i++)
priv->mirror_group_ports[i] = -1;
return err;
}
static int rtl838x_sw_remove(struct platform_device *pdev)
{
pr_info("Removing platform driver for rtl838x-sw\n");
return 0;
}
static const struct of_device_id rtl838x_switch_of_ids[] = {
{ .compatible = "realtek,rtl838x-switch"},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rtl838x_switch_of_ids);
static struct platform_driver rtl838x_switch_driver = {
.probe = rtl838x_sw_probe,
.remove = rtl838x_sw_remove,
.driver = {
.name = "rtl838x-switch",
.pm = NULL,
.of_match_table = rtl838x_switch_of_ids,
},
};
module_platform_driver(rtl838x_switch_driver);
MODULE_AUTHOR("B. Koblitz");
MODULE_DESCRIPTION("RTL838X SoC Switch Driver");
MODULE_LICENSE("GPL");