difos/target/linux/realtek/files-5.10/drivers/net/dsa/rtl83xx/rtl930x.c
Birger Koblitz 1f402512ae realtek: Add SoC-specific routing offload implementation
Adds SoC specific routing offload implementations for
RTL8380/90 and RTL9300. RTL83xx supports merely nexthop
routing, RTL9300 full host and prefix routes.

Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
2021-10-09 08:25:06 +02:00

2403 lines
72 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include <linux/inetdevice.h>
#include "rtl83xx.h"
extern struct mutex smi_lock;
extern struct rtl83xx_soc_info soc_info;
/* Definition of the RTL930X-specific template field IDs as used in the PIE */
enum template_field_id {
TEMPLATE_FIELD_SPM0 = 0, // Source portmask ports 0-15
TEMPLATE_FIELD_SPM1 = 1, // Source portmask ports 16-31
TEMPLATE_FIELD_DMAC0 = 2, // Destination MAC [15:0]
TEMPLATE_FIELD_DMAC1 = 3, // Destination MAC [31:16]
TEMPLATE_FIELD_DMAC2 = 4, // Destination MAC [47:32]
TEMPLATE_FIELD_SMAC0 = 5, // Source MAC [15:0]
TEMPLATE_FIELD_SMAC1 = 6, // Source MAC [31:16]
TEMPLATE_FIELD_SMAC2 = 7, // Source MAC [47:32]
TEMPLATE_FIELD_ETHERTYPE = 8, // Ethernet frame type field
TEMPLATE_FIELD_OTAG = 9,
TEMPLATE_FIELD_ITAG = 10,
TEMPLATE_FIELD_SIP0 = 11,
TEMPLATE_FIELD_SIP1 = 12,
TEMPLATE_FIELD_DIP0 = 13,
TEMPLATE_FIELD_DIP1 = 14,
TEMPLATE_FIELD_IP_TOS_PROTO = 15,
TEMPLATE_FIELD_L4_SPORT = 16,
TEMPLATE_FIELD_L4_DPORT = 17,
TEMPLATE_FIELD_L34_HEADER = 18,
TEMPLATE_FIELD_TCP_INFO = 19,
TEMPLATE_FIELD_FIELD_SELECTOR_VALID = 20,
TEMPLATE_FIELD_FIELD_SELECTOR_0 = 21,
TEMPLATE_FIELD_FIELD_SELECTOR_1 = 22,
TEMPLATE_FIELD_FIELD_SELECTOR_2 = 23,
TEMPLATE_FIELD_FIELD_SELECTOR_3 = 24,
TEMPLATE_FIELD_FIELD_SELECTOR_4 = 25,
TEMPLATE_FIELD_FIELD_SELECTOR_5 = 26,
TEMPLATE_FIELD_SIP2 = 27,
TEMPLATE_FIELD_SIP3 = 28,
TEMPLATE_FIELD_SIP4 = 29,
TEMPLATE_FIELD_SIP5 = 30,
TEMPLATE_FIELD_SIP6 = 31,
TEMPLATE_FIELD_SIP7 = 32,
TEMPLATE_FIELD_DIP2 = 33,
TEMPLATE_FIELD_DIP3 = 34,
TEMPLATE_FIELD_DIP4 = 35,
TEMPLATE_FIELD_DIP5 = 36,
TEMPLATE_FIELD_DIP6 = 37,
TEMPLATE_FIELD_DIP7 = 38,
TEMPLATE_FIELD_PKT_INFO = 39,
TEMPLATE_FIELD_FLOW_LABEL = 40,
TEMPLATE_FIELD_DSAP_SSAP = 41,
TEMPLATE_FIELD_SNAP_OUI = 42,
TEMPLATE_FIELD_FWD_VID = 43,
TEMPLATE_FIELD_RANGE_CHK = 44,
TEMPLATE_FIELD_VLAN_GMSK = 45, // VLAN Group Mask/IP range check
TEMPLATE_FIELD_DLP = 46,
TEMPLATE_FIELD_META_DATA = 47,
TEMPLATE_FIELD_SRC_FWD_VID = 48,
TEMPLATE_FIELD_SLP = 49,
};
/* The meaning of TEMPLATE_FIELD_VLAN depends on phase and the configuration in
* RTL930X_PIE_CTRL. We use always the same definition and map to the inner VLAN tag:
*/
#define TEMPLATE_FIELD_VLAN TEMPLATE_FIELD_ITAG
// Number of fixed templates predefined in the RTL9300 SoC
#define N_FIXED_TEMPLATES 5
// RTL9300 specific predefined templates
static enum template_field_id fixed_templates[N_FIXED_TEMPLATES][N_FIXED_FIELDS] =
{
{
TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
TEMPLATE_FIELD_SMAC0, TEMPLATE_FIELD_SMAC1, TEMPLATE_FIELD_SMAC2,
TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_DSAP_SSAP,
TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
}, {
TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0,
TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_TCP_INFO,
TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_VLAN,
TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
}, {
TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_IP_TOS_PROTO,
TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0,
TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT
}, {
TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_DIP2,
TEMPLATE_FIELD_DIP3, TEMPLATE_FIELD_DIP4, TEMPLATE_FIELD_DIP5,
TEMPLATE_FIELD_DIP6, TEMPLATE_FIELD_DIP7, TEMPLATE_FIELD_IP_TOS_PROTO,
TEMPLATE_FIELD_TCP_INFO, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT
}, {
TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_SIP2,
TEMPLATE_FIELD_SIP3, TEMPLATE_FIELD_SIP4, TEMPLATE_FIELD_SIP5,
TEMPLATE_FIELD_SIP6, TEMPLATE_FIELD_SIP7, TEMPLATE_FIELD_VLAN,
TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_SPM1
},
};
void rtl930x_print_matrix(void)
{
int i;
struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 6);
for (i = 0; i < 29; i++) {
rtl_table_read(r, i);
pr_debug("> %08x\n", sw_r32(rtl_table_data(r, 0)));
}
rtl_table_release(r);
}
inline void rtl930x_exec_tbl0_cmd(u32 cmd)
{
sw_w32(cmd, RTL930X_TBL_ACCESS_CTRL_0);
do { } while (sw_r32(RTL930X_TBL_ACCESS_CTRL_0) & (1 << 17));
}
inline void rtl930x_exec_tbl1_cmd(u32 cmd)
{
sw_w32(cmd, RTL930X_TBL_ACCESS_CTRL_1);
do { } while (sw_r32(RTL930X_TBL_ACCESS_CTRL_1) & (1 << 17));
}
inline int rtl930x_tbl_access_data_0(int i)
{
return RTL930X_TBL_ACCESS_DATA_0(i);
}
static inline int rtl930x_l2_port_new_salrn(int p)
{
return RTL930X_L2_PORT_SALRN(p);
}
static inline int rtl930x_l2_port_new_sa_fwd(int p)
{
// TODO: The definition of the fields changed, because of the master-cpu in a stack
return RTL930X_L2_PORT_NEW_SA_FWD(p);
}
inline static int rtl930x_trk_mbr_ctr(int group)
{
return RTL930X_TRK_MBR_CTRL + (group << 2);
}
static void rtl930x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
{
u32 v, w;
// Read VLAN table (1) via register 0
struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 1);
rtl_table_read(r, vlan);
v = sw_r32(rtl_table_data(r, 0));
w = sw_r32(rtl_table_data(r, 1));
pr_debug("VLAN_READ %d: %08x %08x\n", vlan, v, w);
rtl_table_release(r);
info->tagged_ports = v >> 3;
info->profile_id = (w >> 24) & 7;
info->hash_mc_fid = !!(w & BIT(27));
info->hash_uc_fid = !!(w & BIT(28));
info->fid = ((v & 0x7) << 3) | ((w >> 29) & 0x7);
// Read UNTAG table via table register 2
r = rtl_table_get(RTL9300_TBL_2, 0);
rtl_table_read(r, vlan);
v = sw_r32(rtl_table_data(r, 0));
rtl_table_release(r);
info->untagged_ports = v >> 3;
}
static void rtl930x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info)
{
u32 v, w;
// Access VLAN table (1) via register 0
struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 1);
v = info->tagged_ports << 3;
v |= ((u32)info->fid) >> 3;
w = ((u32)info->fid) << 29;
w |= info->hash_mc_fid ? BIT(27) : 0;
w |= info->hash_uc_fid ? BIT(28) : 0;
w |= info->profile_id << 24;
sw_w32(v, rtl_table_data(r, 0));
sw_w32(w, rtl_table_data(r, 1));
rtl_table_write(r, vlan);
rtl_table_release(r);
}
void rtl930x_vlan_profile_dump(int profile)
{
u32 p[5];
if (profile < 0 || profile > 7)
return;
p[0] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile));
p[1] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile) + 4);
p[2] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile) + 8) & 0x1FFFFFFF;
p[3] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile) + 12) & 0x1FFFFFFF;
p[4] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile) + 16) & 0x1FFFFFFF;
pr_info("VLAN %d: L2 learn: %d; Unknown MC PMasks: L2 %0x, IPv4 %0x, IPv6: %0x",
profile, p[0] & (3 << 21), p[2], p[3], p[4]);
pr_info(" Routing enabled: IPv4 UC %c, IPv6 UC %c, IPv4 MC %c, IPv6 MC %c\n",
p[0] & BIT(17) ? 'y' : 'n', p[0] & BIT(16) ? 'y' : 'n',
p[0] & BIT(13) ? 'y' : 'n', p[0] & BIT(12) ? 'y' : 'n');
pr_info(" Bridge enabled: IPv4 MC %c, IPv6 MC %c,\n",
p[0] & BIT(15) ? 'y' : 'n', p[0] & BIT(14) ? 'y' : 'n');
pr_info("VLAN profile %d: raw %08x %08x %08x %08x %08x\n",
profile, p[0], p[1], p[2], p[3], p[4]);
}
static void rtl930x_vlan_set_untagged(u32 vlan, u64 portmask)
{
struct table_reg *r = rtl_table_get(RTL9300_TBL_2, 0);
sw_w32(portmask << 3, rtl_table_data(r, 0));
rtl_table_write(r, vlan);
rtl_table_release(r);
}
/* Sets the L2 forwarding to be based on either the inner VLAN tag or the outer
*/
static void rtl930x_vlan_fwd_on_inner(int port, bool is_set)
{
// Always set all tag modes to fwd based on either inner or outer tag
if (is_set)
sw_w32_mask(0, 0xf, RTL930X_VLAN_PORT_FWD + (port << 2));
else
sw_w32_mask(0xf, 0, RTL930X_VLAN_PORT_FWD + (port << 2));
}
static void rtl930x_vlan_profile_setup(int profile)
{
u32 p[5];
pr_info("In %s\n", __func__);
p[0] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile));
p[1] = sw_r32(RTL930X_VLAN_PROFILE_SET(profile) + 4);
// Enable routing of Ipv4/6 Unicast and IPv4/6 Multicast traffic
p[0] |= BIT(17) | BIT(16) | BIT(13) | BIT(12);
p[2] = 0x1fffffff; // L2 unknown MC flooding portmask all ports, including the CPU-port
p[3] = 0x1fffffff; // IPv4 unknown MC flooding portmask
p[4] = 0x1fffffff; // IPv6 unknown MC flooding portmask
sw_w32(p[0], RTL930X_VLAN_PROFILE_SET(profile));
sw_w32(p[1], RTL930X_VLAN_PROFILE_SET(profile) + 4);
sw_w32(p[2], RTL930X_VLAN_PROFILE_SET(profile) + 8);
sw_w32(p[3], RTL930X_VLAN_PROFILE_SET(profile) + 12);
sw_w32(p[4], RTL930X_VLAN_PROFILE_SET(profile) + 16);
}
static void rtl930x_l2_learning_setup(void)
{
// Portmask for flooding broadcast traffic
sw_w32(0x1fffffff, RTL930X_L2_BC_FLD_PMSK);
// Portmask for flooding unicast traffic with unknown destination
sw_w32(0x1fffffff, RTL930X_L2_UNKN_UC_FLD_PMSK);
// Limit learning to maximum: 32k entries, after that just flood (bits 0-1)
sw_w32((0x7fff << 2) | 0, RTL930X_L2_LRN_CONSTRT_CTRL);
}
static void rtl930x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
{
int i;
u32 cmd = 1 << 17 /* Execute cmd */
| 0 << 16 /* Read */
| 4 << 12 /* Table type 0b10 */
| (msti & 0xfff);
priv->r->exec_tbl0_cmd(cmd);
for (i = 0; i < 2; i++)
port_state[i] = sw_r32(RTL930X_TBL_ACCESS_DATA_0(i));
pr_debug("MSTI: %d STATE: %08x, %08x\n", msti, port_state[0], port_state[1]);
}
static void rtl930x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
{
int i;
u32 cmd = 1 << 17 /* Execute cmd */
| 1 << 16 /* Write */
| 4 << 12 /* Table type 4 */
| (msti & 0xfff);
for (i = 0; i < 2; i++)
sw_w32(port_state[i], RTL930X_TBL_ACCESS_DATA_0(i));
priv->r->exec_tbl0_cmd(cmd);
}
static inline int rtl930x_mac_force_mode_ctrl(int p)
{
return RTL930X_MAC_FORCE_MODE_CTRL + (p << 2);
}
static inline int rtl930x_mac_port_ctrl(int p)
{
return RTL930X_MAC_L2_PORT_CTRL(p);
}
static inline int rtl930x_mac_link_spd_sts(int p)
{
return RTL930X_MAC_LINK_SPD_STS(p);
}
static u64 rtl930x_l2_hash_seed(u64 mac, u32 vid)
{
u64 v = vid;
v <<= 48;
v |= mac;
return v;
}
/*
* Calculate both the block 0 and the block 1 hash by applyingthe same hash
* algorithm as the one used currently by the ASIC to the seed, and return
* both hashes in the lower and higher word of the return value since only 12 bit of
* the hash are significant
*/
static u32 rtl930x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
{
u32 k0, k1, h1, h2, h;
k0 = (u32) (((seed >> 55) & 0x1f) ^ ((seed >> 44) & 0x7ff)
^ ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff)
^ ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff));
h1 = (seed >> 11) & 0x7ff;
h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f);
h2 = (seed >> 33) & 0x7ff;
h2 = ((h2 & 0x3f) << 5)| ((h2 >> 6) & 0x3f);
k1 = (u32) (((seed << 55) & 0x1f) ^ ((seed >> 44) & 0x7ff) ^ h2
^ ((seed >> 22) & 0x7ff) ^ h1
^ (seed & 0x7ff));
// Algorithm choice for block 0
if (sw_r32(RTL930X_L2_CTRL) & BIT(0))
h = k1;
else
h = k0;
/* Algorithm choice for block 1
* Since k0 and k1 are < 2048, adding 2048 will offset the hash into the second
* half of hash-space
* 2048 is in fact the hash-table size 16384 divided by 4 hashes per bucket
* divided by 2 to divide the hash space in 2
*/
if (sw_r32(RTL930X_L2_CTRL) & BIT(1))
h |= (k1 + 2048) << 16;
else
h |= (k0 + 2048) << 16;
return h;
}
/*
* Fills an L2 entry structure from the SoC registers
*/
static void rtl930x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
{
pr_debug("In %s valid?\n", __func__);
e->valid = !!(r[2] & BIT(31));
if (!e->valid)
return;
pr_debug("In %s is valid\n", __func__);
e->is_ip_mc = false;
e->is_ipv6_mc = false;
// TODO: Is there not a function to copy directly MAC memory?
e->mac[0] = (r[0] >> 24);
e->mac[1] = (r[0] >> 16);
e->mac[2] = (r[0] >> 8);
e->mac[3] = r[0];
e->mac[4] = (r[1] >> 24);
e->mac[5] = (r[1] >> 16);
e->next_hop = !!(r[2] & BIT(12));
e->rvid = r[1] & 0xfff;
/* Is it a unicast entry? check multicast bit */
if (!(e->mac[0] & 1)) {
e->type = L2_UNICAST;
e->is_static = !!(r[2] & BIT(14));
e->port = (r[2] >> 20) & 0x3ff;
// Check for trunk port
if (r[2] & BIT(30)) {
e->is_trunk = true;
e->stack_dev = (e->port >> 9) & 1;
e->trunk = e->port & 0x3f;
} else {
e->is_trunk = false;
e->stack_dev = (e->port >> 6) & 0xf;
e->port = e->port & 0x3f;
}
e->block_da = !!(r[2] & BIT(15));
e->block_sa = !!(r[2] & BIT(16));
e->suspended = !!(r[2] & BIT(13));
e->age = (r[2] >> 17) & 3;
e->valid = true;
// the UC_VID field in hardware is used for the VID or for the route id
if (e->next_hop) {
e->nh_route_id = r[2] & 0x7ff;
e->vid = 0;
} else {
e->vid = r[2] & 0xfff;
e->nh_route_id = 0;
}
} else {
e->valid = true;
e->type = L2_MULTICAST;
e->mc_portmask_index = (r[2] >> 16) & 0x3ff;
}
}
/*
* Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry
*/
static void rtl930x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
{
u32 port;
if (!e->valid) {
r[0] = r[1] = r[2] = 0;
return;
}
r[2] = BIT(31); // Set valid bit
r[0] = ((u32)e->mac[0]) << 24 | ((u32)e->mac[1]) << 16
| ((u32)e->mac[2]) << 8 | ((u32)e->mac[3]);
r[1] = ((u32)e->mac[4]) << 24 | ((u32)e->mac[5]) << 16;
r[2] |= e->next_hop ? BIT(12) : 0;
if (e->type == L2_UNICAST) {
r[2] |= e->is_static ? BIT(14) : 0;
r[1] |= e->rvid & 0xfff;
r[2] |= (e->port & 0x3ff) << 20;
if (e->is_trunk) {
r[2] |= BIT(30);
port = e->stack_dev << 9 | (e->port & 0x3f);
} else {
port = (e->stack_dev & 0xf) << 6;
port |= e->port & 0x3f;
}
r[2] |= port << 20;
r[2] |= e->block_da ? BIT(15) : 0;
r[2] |= e->block_sa ? BIT(17) : 0;
r[2] |= e->suspended ? BIT(13) : 0;
r[2] |= (e->age & 0x3) << 17;
// the UC_VID field in hardware is used for the VID or for the route id
if (e->next_hop)
r[2] |= e->nh_route_id & 0x7ff;
else
r[2] |= e->vid & 0xfff;
} else { // L2_MULTICAST
r[2] |= (e->mc_portmask_index & 0x3ff) << 16;
r[2] |= e->mc_mac_index & 0x7ff;
}
}
/*
* Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
* hash is the id of the bucket and pos is the position of the entry in that bucket
* The data read from the SoC is filled into rtl838x_l2_entry
*/
static u64 rtl930x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 0);
u32 idx;
int i;
u64 mac;
u64 seed;
pr_debug("%s: hash %08x, pos: %d\n", __func__, hash, pos);
/* On the RTL93xx, 2 different hash algorithms are used making it a total of
* 8 buckets that need to be searched, 4 for each hash-half
* Use second hash space when bucket is between 4 and 8 */
if (pos >= 4) {
pos -= 4;
hash >>= 16;
} else {
hash &= 0xffff;
}
idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket
pr_debug("%s: NOW hash %08x, pos: %d\n", __func__, hash, pos);
rtl_table_read(q, idx);
for (i = 0; i < 3; i++)
r[i] = sw_r32(rtl_table_data(q, i));
rtl_table_release(q);
rtl930x_fill_l2_entry(r, e);
pr_debug("%s: valid: %d, nh: %d\n", __func__, e->valid, e->next_hop);
if (!e->valid)
return 0;
mac = ((u64)e->mac[0]) << 40 | ((u64)e->mac[1]) << 32 | ((u64)e->mac[2]) << 24
| ((u64)e->mac[3]) << 16 | ((u64)e->mac[4]) << 8 | ((u64)e->mac[5]);
seed = rtl930x_l2_hash_seed(mac, e->rvid);
pr_debug("%s: mac %016llx, seed %016llx\n", __func__, mac, seed);
// return vid with concatenated mac as unique id
return seed;
}
static void rtl930x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 0);
u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket
int i;
pr_debug("%s: hash %d, pos %d\n", __func__, hash, pos);
pr_debug("%s: index %d -> mac %02x:%02x:%02x:%02x:%02x:%02x\n", __func__, idx,
e->mac[0], e->mac[1], e->mac[2], e->mac[3],e->mac[4],e->mac[5]);
rtl930x_fill_l2_row(r, e);
for (i= 0; i < 3; i++)
sw_w32(r[i], rtl_table_data(q, i));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static u64 rtl930x_read_cam(int idx, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 1);
int i;
rtl_table_read(q, idx);
for (i= 0; i < 3; i++)
r[i] = sw_r32(rtl_table_data(q, i));
rtl_table_release(q);
rtl930x_fill_l2_entry(r, e);
if (!e->valid)
return 0;
// return mac with concatenated vid as unique id
return ((u64)r[0] << 28) | ((r[1] & 0xffff0000) >> 4) | e->vid;
}
static void rtl930x_write_cam(int idx, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 1); // Access L2 Table 1
int i;
rtl930x_fill_l2_row(r, e);
for (i= 0; i < 3; i++)
sw_w32(r[i], rtl_table_data(q, i));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static void dump_l2_entry(struct rtl838x_l2_entry *e)
{
pr_info("MAC: %02x:%02x:%02x:%02x:%02x:%02x vid: %d, rvid: %d, port: %d, valid: %d\n",
e->mac[0], e->mac[1], e->mac[2], e->mac[3], e->mac[4], e->mac[5],
e->vid, e->rvid, e->port, e->valid);
pr_info("Type: %d, is_static: %d, is_ip_mc: %d, is_ipv6_mc: %d, block_da: %d\n",
e->type, e->is_static, e->is_ip_mc, e->is_ipv6_mc, e->block_da);
pr_info(" block_sa: %d, suspended: %d, next_hop: %d, age: %d, is_trunk: %d, trunk: %d\n",
e->block_sa, e->suspended, e->next_hop, e->age, e->is_trunk, e->trunk);
if (e->is_ip_mc || e->is_ipv6_mc)
pr_info(" mc_portmask_index: %d, mc_gip: %d, mc_sip: %d\n",
e->mc_portmask_index, e->mc_gip, e->mc_sip);
pr_info(" stac_dev: %d, nh_route_id: %d, port: %d, dev_id\n",
e->stack_dev, e->nh_route_id, e->port);
}
static u64 rtl930x_read_mcast_pmask(int idx)
{
u32 portmask;
// Read MC_PORTMASK (2) via register RTL9300_TBL_L2
struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 2);
rtl_table_read(q, idx);
portmask = sw_r32(rtl_table_data(q, 0));
portmask >>= 3;
rtl_table_release(q);
pr_debug("%s: Index idx %d has portmask %08x\n", __func__, idx, portmask);
return portmask;
}
static void rtl930x_write_mcast_pmask(int idx, u64 portmask)
{
u32 pm = portmask;
// Access MC_PORTMASK (2) via register RTL9300_TBL_L2
struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 2);
pr_debug("%s: Index idx %d has portmask %08x\n", __func__, idx, pm);
pm <<= 3;
sw_w32(pm, rtl_table_data(q, 0));
rtl_table_write(q, idx);
rtl_table_release(q);
}
u64 rtl930x_traffic_get(int source)
{
u32 v;
struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 6);
rtl_table_read(r, source);
v = sw_r32(rtl_table_data(r, 0));
rtl_table_release(r);
return v >> 3;
}
/*
* Enable traffic between a source port and a destination port matrix
*/
void rtl930x_traffic_set(int source, u64 dest_matrix)
{
struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 6);
sw_w32((dest_matrix << 3), rtl_table_data(r, 0));
rtl_table_write(r, source);
rtl_table_release(r);
}
void rtl930x_traffic_enable(int source, int dest)
{
struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 6);
rtl_table_read(r, source);
sw_w32_mask(0, BIT(dest + 3), rtl_table_data(r, 0));
rtl_table_write(r, source);
rtl_table_release(r);
}
void rtl930x_traffic_disable(int source, int dest)
{
struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 6);
rtl_table_read(r, source);
sw_w32_mask(BIT(dest + 3), 0, rtl_table_data(r, 0));
rtl_table_write(r, source);
rtl_table_release(r);
}
void rtl9300_dump_debug(void)
{
int i;
u16 r = RTL930X_STAT_PRVTE_DROP_COUNTER0;
for (i = 0; i < 10; i ++) {
pr_info("# %d %08x %08x %08x %08x %08x %08x %08x %08x\n", i * 8,
sw_r32(r), sw_r32(r + 4), sw_r32(r + 8), sw_r32(r + 12),
sw_r32(r + 16), sw_r32(r + 20), sw_r32(r + 24), sw_r32(r + 28));
r += 32;
}
pr_info("# %08x %08x %08x %08x %08x\n",
sw_r32(r), sw_r32(r + 4), sw_r32(r + 8), sw_r32(r + 12), sw_r32(r + 16));
rtl930x_print_matrix();
pr_info("RTL930X_L2_PORT_SABLK_CTRL: %08x, RTL930X_L2_PORT_DABLK_CTRL %08x\n",
sw_r32(RTL930X_L2_PORT_SABLK_CTRL), sw_r32(RTL930X_L2_PORT_DABLK_CTRL)
);
}
irqreturn_t rtl930x_switch_irq(int irq, void *dev_id)
{
struct dsa_switch *ds = dev_id;
u32 status = sw_r32(RTL930X_ISR_GLB);
u32 ports = sw_r32(RTL930X_ISR_PORT_LINK_STS_CHG);
u32 link;
int i;
/* Clear status */
sw_w32(ports, RTL930X_ISR_PORT_LINK_STS_CHG);
for (i = 0; i < 28; i++) {
if (ports & BIT(i)) {
/* Read the register twice because of issues with latency at least
* with the external RTL8226 PHY on the XGS1210 */
link = sw_r32(RTL930X_MAC_LINK_STS);
link = sw_r32(RTL930X_MAC_LINK_STS);
if (link & BIT(i))
dsa_port_phylink_mac_change(ds, i, true);
else
dsa_port_phylink_mac_change(ds, i, false);
}
}
return IRQ_HANDLED;
}
int rtl930x_write_phy(u32 port, u32 page, u32 reg, u32 val)
{
u32 v;
int err = 0;
pr_debug("%s: port %d, page: %d, reg: %x, val: %x\n", __func__, port, page, reg, val);
if (port > 63 || page > 4095 || reg > 31)
return -ENOTSUPP;
val &= 0xffff;
mutex_lock(&smi_lock);
sw_w32(BIT(port), RTL930X_SMI_ACCESS_PHY_CTRL_0);
sw_w32_mask(0xffff << 16, val << 16, RTL930X_SMI_ACCESS_PHY_CTRL_2);
v = reg << 20 | page << 3 | 0x1f << 15 | BIT(2) | BIT(0);
sw_w32(v, RTL930X_SMI_ACCESS_PHY_CTRL_1);
do {
v = sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_1);
} while (v & 0x1);
if (v & 0x2)
err = -EIO;
mutex_unlock(&smi_lock);
return err;
}
int rtl930x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
{
u32 v;
int err = 0;
if (port > 63 || page > 4095 || reg > 31)
return -ENOTSUPP;
mutex_lock(&smi_lock);
sw_w32_mask(0xffff << 16, port << 16, RTL930X_SMI_ACCESS_PHY_CTRL_2);
v = reg << 20 | page << 3 | 0x1f << 15 | 1;
sw_w32(v, RTL930X_SMI_ACCESS_PHY_CTRL_1);
do {
v = sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_1);
} while ( v & 0x1);
if (v & BIT(25)) {
pr_debug("Error reading phy %d, register %d\n", port, reg);
err = -EIO;
}
*val = (sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_2) & 0xffff);
pr_debug("%s: port %d, page: %d, reg: %x, val: %x\n", __func__, port, page, reg, *val);
mutex_unlock(&smi_lock);
return err;
}
/*
* Write to an mmd register of the PHY
*/
int rtl930x_write_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 val)
{
int err = 0;
u32 v;
mutex_lock(&smi_lock);
// Set PHY to access
sw_w32(BIT(port), RTL930X_SMI_ACCESS_PHY_CTRL_0);
// Set data to write
sw_w32_mask(0xffff << 16, val << 16, RTL930X_SMI_ACCESS_PHY_CTRL_2);
// Set MMD device number and register to write to
sw_w32(devnum << 16 | (regnum & 0xffff), RTL930X_SMI_ACCESS_PHY_CTRL_3);
v = BIT(2) | BIT(1) | BIT(0); // WRITE | MMD-access | EXEC
sw_w32(v, RTL930X_SMI_ACCESS_PHY_CTRL_1);
do {
v = sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_1);
} while (v & BIT(0));
pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, val, err);
mutex_unlock(&smi_lock);
return err;
}
/*
* Read an mmd register of the PHY
*/
int rtl930x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val)
{
int err = 0;
u32 v;
mutex_lock(&smi_lock);
// Set PHY to access
sw_w32_mask(0xffff << 16, port << 16, RTL930X_SMI_ACCESS_PHY_CTRL_2);
// Set MMD device number and register to write to
sw_w32(devnum << 16 | (regnum & 0xffff), RTL930X_SMI_ACCESS_PHY_CTRL_3);
v = BIT(1) | BIT(0); // MMD-access | EXEC
sw_w32(v, RTL930X_SMI_ACCESS_PHY_CTRL_1);
do {
v = sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_1);
} while (v & BIT(0));
// There is no error-checking via BIT 25 of v, as it does not seem to be set correctly
*val = (sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_2) & 0xffff);
pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, *val, err);
mutex_unlock(&smi_lock);
return err;
}
/*
* Calculate both the block 0 and the block 1 hash, and return in
* lower and higher word of the return value since only 12 bit of
* the hash are significant
*/
u32 rtl930x_hash(struct rtl838x_switch_priv *priv, u64 seed)
{
u32 k0, k1, h1, h2, h;
k0 = (u32) (((seed >> 55) & 0x1f) ^ ((seed >> 44) & 0x7ff)
^ ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff)
^ ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff));
h1 = (seed >> 11) & 0x7ff;
h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f);
h2 = (seed >> 33) & 0x7ff;
h2 = ((h2 & 0x3f) << 5)| ((h2 >> 6) & 0x3f);
k1 = (u32) (((seed << 55) & 0x1f) ^ ((seed >> 44) & 0x7ff) ^ h2
^ ((seed >> 22) & 0x7ff) ^ h1
^ (seed & 0x7ff));
// Algorithm choice for block 0
if (sw_r32(RTL930X_L2_CTRL) & BIT(0))
h = k1;
else
h = k0;
/* Algorithm choice for block 1
* Since k0 and k1 are < 2048, adding 2048 will offset the hash into the second
* half of hash-space
* 2048 is in fact the hash-table size 16384 divided by 4 hashes per bucket
* divided by 2 to divide the hash space in 2
*/
if (sw_r32(RTL930X_L2_CTRL) & BIT(1))
h |= (k1 + 2048) << 16;
else
h |= (k0 + 2048) << 16;
return h;
}
/*
* Enables or disables the EEE/EEEP capability of a port
*/
void rtl930x_port_eee_set(struct rtl838x_switch_priv *priv, int port, bool enable)
{
u32 v;
// This works only for Ethernet ports, and on the RTL930X, ports from 26 are SFP
if (port >= 26)
return;
pr_debug("In %s: setting port %d to %d\n", __func__, port, enable);
v = enable ? 0x3f : 0x0;
// Set EEE/EEEP state for 100, 500, 1000MBit and 2.5, 5 and 10GBit
sw_w32_mask(0, v << 10, rtl930x_mac_force_mode_ctrl(port));
// Set TX/RX EEE state
v = enable ? 0x3 : 0x0;
sw_w32(v, RTL930X_EEE_CTRL(port));
priv->ports[port].eee_enabled = enable;
}
/*
* Get EEE own capabilities and negotiation result
*/
int rtl930x_eee_port_ability(struct rtl838x_switch_priv *priv, struct ethtool_eee *e, int port)
{
u32 link, a;
if (port >= 26)
return -ENOTSUPP;
pr_info("In %s, port %d\n", __func__, port);
link = sw_r32(RTL930X_MAC_LINK_STS);
link = sw_r32(RTL930X_MAC_LINK_STS);
if (!(link & BIT(port)))
return 0;
pr_info("Setting advertised\n");
if (sw_r32(rtl930x_mac_force_mode_ctrl(port)) & BIT(10))
e->advertised |= ADVERTISED_100baseT_Full;
if (sw_r32(rtl930x_mac_force_mode_ctrl(port)) & BIT(12))
e->advertised |= ADVERTISED_1000baseT_Full;
if (priv->ports[port].is2G5 && sw_r32(rtl930x_mac_force_mode_ctrl(port)) & BIT(13)) {
pr_info("ADVERTISING 2.5G EEE\n");
e->advertised |= ADVERTISED_2500baseX_Full;
}
if (priv->ports[port].is10G && sw_r32(rtl930x_mac_force_mode_ctrl(port)) & BIT(15))
e->advertised |= ADVERTISED_10000baseT_Full;
a = sw_r32(RTL930X_MAC_EEE_ABLTY);
a = sw_r32(RTL930X_MAC_EEE_ABLTY);
pr_info("Link partner: %08x\n", a);
if (a & BIT(port)) {
e->lp_advertised = ADVERTISED_100baseT_Full;
e->lp_advertised |= ADVERTISED_1000baseT_Full;
if (priv->ports[port].is2G5)
e->lp_advertised |= ADVERTISED_2500baseX_Full;
if (priv->ports[port].is10G)
e->lp_advertised |= ADVERTISED_10000baseT_Full;
}
// Read 2x to clear latched state
a = sw_r32(RTL930X_EEEP_PORT_CTRL(port));
a = sw_r32(RTL930X_EEEP_PORT_CTRL(port));
pr_info("%s RTL930X_EEEP_PORT_CTRL: %08x\n", __func__, a);
return 0;
}
static void rtl930x_init_eee(struct rtl838x_switch_priv *priv, bool enable)
{
int i;
pr_info("Setting up EEE, state: %d\n", enable);
// Setup EEE on all ports
for (i = 0; i < priv->cpu_port; i++) {
if (priv->ports[i].phy)
rtl930x_port_eee_set(priv, i, enable);
}
priv->eee_enabled = enable;
}
#define HASH_PICK(val, lsb, len) ((val & (((1 << len) - 1) << lsb)) >> lsb)
static u32 rtl930x_l3_hash4(u32 ip, int algorithm, bool move_dip)
{
u32 rows[4];
u32 hash;
u32 s0, s1, pH;
memset(rows, 0, sizeof(rows));
rows[0] = HASH_PICK(ip, 27, 5);
rows[1] = HASH_PICK(ip, 18, 9);
rows[2] = HASH_PICK(ip, 9, 9);
if (!move_dip)
rows[3] = HASH_PICK(ip, 0, 9);
if (!algorithm) {
hash = rows[0] ^ rows[1] ^ rows[2] ^ rows[3];
} else {
s0 = rows[0] + rows[1] + rows[2];
s1 = (s0 & 0x1ff) + ((s0 & (0x1ff << 9)) >> 9);
pH = (s1 & 0x1ff) + ((s1 & (0x1ff << 9)) >> 9);
hash = pH ^ rows[3];
}
return hash;
}
static u32 rtl930x_l3_hash6(struct in6_addr *ip6, int algorithm, bool move_dip)
{
u32 rows[16];
u32 hash;
u32 s0, s1, pH;
rows[0] = (HASH_PICK(ip6->s6_addr[0], 6, 2) << 0);
rows[1] = (HASH_PICK(ip6->s6_addr[0], 0, 6) << 3) | HASH_PICK(ip6->s6_addr[1], 5, 3);
rows[2] = (HASH_PICK(ip6->s6_addr[1], 0, 5) << 4) | HASH_PICK(ip6->s6_addr[2], 4, 4);
rows[3] = (HASH_PICK(ip6->s6_addr[2], 0, 4) << 5) | HASH_PICK(ip6->s6_addr[3], 3, 5);
rows[4] = (HASH_PICK(ip6->s6_addr[3], 0, 3) << 6) | HASH_PICK(ip6->s6_addr[4], 2, 6);
rows[5] = (HASH_PICK(ip6->s6_addr[4], 0, 2) << 7) | HASH_PICK(ip6->s6_addr[5], 1, 7);
rows[6] = (HASH_PICK(ip6->s6_addr[5], 0, 1) << 8) | HASH_PICK(ip6->s6_addr[6], 0, 8);
rows[7] = (HASH_PICK(ip6->s6_addr[7], 0, 8) << 1) | HASH_PICK(ip6->s6_addr[8], 7, 1);
rows[8] = (HASH_PICK(ip6->s6_addr[8], 0, 7) << 2) | HASH_PICK(ip6->s6_addr[9], 6, 2);
rows[9] = (HASH_PICK(ip6->s6_addr[9], 0, 6) << 3) | HASH_PICK(ip6->s6_addr[10], 5, 3);
rows[10] = (HASH_PICK(ip6->s6_addr[10], 0, 5) << 4) | HASH_PICK(ip6->s6_addr[11], 4, 4);
if (!algorithm) {
rows[11] = (HASH_PICK(ip6->s6_addr[11], 0, 4) << 5)
| (HASH_PICK(ip6->s6_addr[12], 3, 5) << 0);
rows[12] = (HASH_PICK(ip6->s6_addr[12], 0, 3) << 6)
| (HASH_PICK(ip6->s6_addr[13], 2, 6) << 0);
rows[13] = (HASH_PICK(ip6->s6_addr[13], 0, 2) << 7)
| (HASH_PICK(ip6->s6_addr[14], 1, 7) << 0);
if (!move_dip) {
rows[14] = (HASH_PICK(ip6->s6_addr[14], 0, 1) << 8)
| (HASH_PICK(ip6->s6_addr[15], 0, 8) << 0);
}
hash = rows[0] ^ rows[1] ^ rows[2] ^ rows[3] ^ rows[4] ^ rows[5] ^ rows[6]
^ rows[7] ^ rows[8] ^ rows[9] ^ rows[10] ^ rows[11] ^ rows[12]
^ rows[13] ^ rows[14];
} else {
rows[11] = (HASH_PICK(ip6->s6_addr[11], 0, 4) << 5);
rows[12] = (HASH_PICK(ip6->s6_addr[12], 3, 5) << 0);
rows[13] = (HASH_PICK(ip6->s6_addr[12], 0, 3) << 6)
| HASH_PICK(ip6->s6_addr[13], 2, 6);
rows[14] = (HASH_PICK(ip6->s6_addr[13], 0, 2) << 7)
| HASH_PICK(ip6->s6_addr[14], 1, 7);
if (!move_dip) {
rows[15] = (HASH_PICK(ip6->s6_addr[14], 0, 1) << 8)
| (HASH_PICK(ip6->s6_addr[15], 0, 8) << 0);
}
s0 = rows[12] + rows[13] + rows[14];
s1 = (s0 & 0x1ff) + ((s0 & (0x1ff << 9)) >> 9);
pH = (s1 & 0x1ff) + ((s1 & (0x1ff << 9)) >> 9);
hash = rows[0] ^ rows[1] ^ rows[2] ^ rows[3] ^ rows[4] ^ rows[5] ^ rows[6]
^ rows[7] ^ rows[8] ^ rows[9] ^ rows[10] ^ rows[11] ^ pH ^ rows[15];
}
return hash;
}
/*
* Read a prefix route entry from the L3_PREFIX_ROUTE_IPUC table
* We currently only support IPv4 and IPv6 unicast route
*/
static void rtl930x_route_read(int idx, struct rtl83xx_route *rt)
{
u32 v, ip4_m;
bool host_route, default_route;
struct in6_addr ip6_m;
// Read L3_PREFIX_ROUTE_IPUC table (2) via register RTL9300_TBL_1
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 2);
rtl_table_read(r, idx);
// The table has a size of 11 registers
rt->attr.valid = !!(sw_r32(rtl_table_data(r, 0)) & BIT(31));
if (!rt->attr.valid)
goto out;
rt->attr.type = (sw_r32(rtl_table_data(r, 0)) >> 29) & 0x3;
v = sw_r32(rtl_table_data(r, 10));
host_route = !!(v & BIT(21));
default_route = !!(v & BIT(20));
rt->prefix_len = -1;
pr_info("%s: host route %d, default_route %d\n", __func__, host_route, default_route);
switch (rt->attr.type) {
case 0: // IPv4 Unicast route
rt->dst_ip = sw_r32(rtl_table_data(r, 4));
ip4_m = sw_r32(rtl_table_data(r, 9));
pr_info("%s: Read ip4 mask: %08x\n", __func__, ip4_m);
rt->prefix_len = host_route ? 32 : -1;
rt->prefix_len = (rt->prefix_len < 0 && default_route) ? 0 : -1;
if (rt->prefix_len < 0)
rt->prefix_len = inet_mask_len(ip4_m);
break;
case 2: // IPv6 Unicast route
ipv6_addr_set(&rt->dst_ip6,
sw_r32(rtl_table_data(r, 1)), sw_r32(rtl_table_data(r, 2)),
sw_r32(rtl_table_data(r, 3)), sw_r32(rtl_table_data(r, 4)));
ipv6_addr_set(&ip6_m,
sw_r32(rtl_table_data(r, 6)), sw_r32(rtl_table_data(r, 7)),
sw_r32(rtl_table_data(r, 8)), sw_r32(rtl_table_data(r, 9)));
rt->prefix_len = host_route ? 128 : 0;
rt->prefix_len = (rt->prefix_len < 0 && default_route) ? 0 : -1;
if (rt->prefix_len < 0)
rt->prefix_len = find_last_bit((unsigned long int *)&ip6_m.s6_addr32,
128);
break;
case 1: // IPv4 Multicast route
case 3: // IPv6 Multicast route
pr_warn("%s: route type not supported\n", __func__);
goto out;
}
rt->attr.hit = !!(v & BIT(22));
rt->attr.action = (v >> 18) & 3;
rt->nh.id = (v >> 7) & 0x7ff;
rt->attr.ttl_dec = !!(v & BIT(6));
rt->attr.ttl_check = !!(v & BIT(5));
rt->attr.dst_null = !!(v & BIT(4));
rt->attr.qos_as = !!(v & BIT(3));
rt->attr.qos_prio = v & 0x7;
pr_info("%s: index %d is valid: %d\n", __func__, idx, rt->attr.valid);
pr_info("%s: next_hop: %d, hit: %d, action :%d, ttl_dec %d, ttl_check %d, dst_null %d\n",
__func__, rt->nh.id, rt->attr.hit, rt->attr.action,
rt->attr.ttl_dec, rt->attr.ttl_check, rt->attr.dst_null);
pr_info("%s: GW: %pI4, prefix_len: %d\n", __func__, &rt->dst_ip, rt->prefix_len);
out:
rtl_table_release(r);
}
static void rtl930x_net6_mask(int prefix_len, struct in6_addr *ip6_m)
{
int o, b;
// Define network mask
o = prefix_len >> 3;
b = prefix_len & 0x7;
memset(ip6_m->s6_addr, 0xff, o);
ip6_m->s6_addr[o] |= b ? 0xff00 >> b : 0x00;
}
/*
* Read a host route entry from the table using its index
* We currently only support IPv4 and IPv6 unicast route
*/
static void rtl930x_host_route_read(int idx, struct rtl83xx_route *rt)
{
u32 v;
// Read L3_HOST_ROUTE_IPUC table (1) via register RTL9300_TBL_1
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 1);
idx = ((idx / 6) * 8) + (idx % 6);
pr_debug("In %s, physical index %d\n", __func__, idx);
rtl_table_read(r, idx);
// The table has a size of 5 (for UC, 11 for MC) registers
v = sw_r32(rtl_table_data(r, 0));
rt->attr.valid = !!(v & BIT(31));
if (!rt->attr.valid)
goto out;
rt->attr.type = (v >> 29) & 0x3;
switch (rt->attr.type) {
case 0: // IPv4 Unicast route
rt->dst_ip = sw_r32(rtl_table_data(r, 4));
break;
case 2: // IPv6 Unicast route
ipv6_addr_set(&rt->dst_ip6,
sw_r32(rtl_table_data(r, 3)), sw_r32(rtl_table_data(r, 2)),
sw_r32(rtl_table_data(r, 1)), sw_r32(rtl_table_data(r, 0)));
break;
case 1: // IPv4 Multicast route
case 3: // IPv6 Multicast route
pr_warn("%s: route type not supported\n", __func__);
goto out;
}
rt->attr.hit = !!(v & BIT(20));
rt->attr.dst_null = !!(v & BIT(19));
rt->attr.action = (v >> 17) & 3;
rt->nh.id = (v >> 6) & 0x7ff;
rt->attr.ttl_dec = !!(v & BIT(5));
rt->attr.ttl_check = !!(v & BIT(4));
rt->attr.qos_as = !!(v & BIT(3));
rt->attr.qos_prio = v & 0x7;
pr_debug("%s: index %d is valid: %d\n", __func__, idx, rt->attr.valid);
pr_debug("%s: next_hop: %d, hit: %d, action :%d, ttl_dec %d, ttl_check %d, dst_null %d\n",
__func__, rt->nh.id, rt->attr.hit, rt->attr.action, rt->attr.ttl_dec, rt->attr.ttl_check,
rt->attr.dst_null);
pr_debug("%s: Destination: %pI4\n", __func__, &rt->dst_ip);
out:
rtl_table_release(r);
}
/*
* Write a host route entry from the table using its index
* We currently only support IPv4 and IPv6 unicast route
*/
static void rtl930x_host_route_write(int idx, struct rtl83xx_route *rt)
{
u32 v;
// Access L3_HOST_ROUTE_IPUC table (1) via register RTL9300_TBL_1
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 1);
// The table has a size of 5 (for UC, 11 for MC) registers
idx = ((idx / 6) * 8) + (idx % 6);
pr_debug("%s: index %d is valid: %d\n", __func__, idx, rt->attr.valid);
pr_debug("%s: next_hop: %d, hit: %d, action :%d, ttl_dec %d, ttl_check %d, dst_null %d\n",
__func__, rt->nh.id, rt->attr.hit, rt->attr.action, rt->attr.ttl_dec, rt->attr.ttl_check,
rt->attr.dst_null);
pr_debug("%s: GW: %pI4, prefix_len: %d\n", __func__, &rt->dst_ip, rt->prefix_len);
v = BIT(31); // Entry is valid
v |= (rt->attr.type & 0x3) << 29;
v |= rt->attr.hit ? BIT(20) : 0;
v |= rt->attr.dst_null ? BIT(19) : 0;
v |= (rt->attr.action & 0x3) << 17;
v |= (rt->nh.id & 0x7ff) << 6;
v |= rt->attr.ttl_dec ? BIT(5) : 0;
v |= rt->attr.ttl_check ? BIT(4) : 0;
v |= rt->attr.qos_as ? BIT(3) : 0;
v |= rt->attr.qos_prio & 0x7;
sw_w32(v, rtl_table_data(r, 0));
switch (rt->attr.type) {
case 0: // IPv4 Unicast route
sw_w32(0, rtl_table_data(r, 1));
sw_w32(0, rtl_table_data(r, 2));
sw_w32(0, rtl_table_data(r, 3));
sw_w32(rt->dst_ip, rtl_table_data(r, 4));
break;
case 2: // IPv6 Unicast route
sw_w32(rt->dst_ip6.s6_addr32[0], rtl_table_data(r, 1));
sw_w32(rt->dst_ip6.s6_addr32[1], rtl_table_data(r, 2));
sw_w32(rt->dst_ip6.s6_addr32[2], rtl_table_data(r, 3));
sw_w32(rt->dst_ip6.s6_addr32[3], rtl_table_data(r, 4));
break;
case 1: // IPv4 Multicast route
case 3: // IPv6 Multicast route
pr_warn("%s: route type not supported\n", __func__);
goto out;
}
rtl_table_write(r, idx);
out:
rtl_table_release(r);
}
/*
* Look up the index of a prefix route in the routing table CAM for unicast IPv4/6 routes
* using hardware offload.
*/
static int rtl930x_route_lookup_hw(struct rtl83xx_route *rt)
{
u32 ip4_m, v;
struct in6_addr ip6_m;
int i;
if (rt->attr.type == 1 || rt->attr.type == 3) // Hardware only supports UC routes
return -1;
sw_w32_mask(0x3 << 19, rt->attr.type, RTL930X_L3_HW_LU_KEY_CTRL);
if (rt->attr.type) { // IPv6
rtl930x_net6_mask(rt->prefix_len, &ip6_m);
for (i = 0; i < 4; i++)
sw_w32(rt->dst_ip6.s6_addr32[0] & ip6_m.s6_addr32[0],
RTL930X_L3_HW_LU_KEY_IP_CTRL + (i << 2));
} else { // IPv4
ip4_m = inet_make_mask(rt->prefix_len);
sw_w32(0, RTL930X_L3_HW_LU_KEY_IP_CTRL);
sw_w32(0, RTL930X_L3_HW_LU_KEY_IP_CTRL + 4);
sw_w32(0, RTL930X_L3_HW_LU_KEY_IP_CTRL + 8);
v = rt->dst_ip & ip4_m;
pr_info("%s: searching for %pI4\n", __func__, &v);
sw_w32(v, RTL930X_L3_HW_LU_KEY_IP_CTRL + 12);
}
// Execute CAM lookup in SoC
sw_w32(BIT(15), RTL930X_L3_HW_LU_CTRL);
// Wait until execute bit clears and result is ready
do {
v = sw_r32(RTL930X_L3_HW_LU_CTRL);
} while (v & BIT(15));
pr_info("%s: found: %d, index: %d\n", __func__, !!(v & BIT(14)), v & 0x1ff);
// Test if search successful (BIT 14 set)
if (v & BIT(14))
return v & 0x1ff;
return -1;
}
static int rtl930x_find_l3_slot(struct rtl83xx_route *rt, bool must_exist)
{
int t, s, slot_width, algorithm, addr, idx;
u32 hash;
struct rtl83xx_route route_entry;
// IPv6 entries take up 3 slots
slot_width = (rt->attr.type == 0) || (rt->attr.type == 2) ? 1 : 3;
for (t = 0; t < 2; t++) {
algorithm = (sw_r32(RTL930X_L3_HOST_TBL_CTRL) >> (2 + t)) & 0x1;
hash = rtl930x_l3_hash4(rt->dst_ip, algorithm, false);
pr_debug("%s: table %d, algorithm %d, hash %04x\n", __func__, t, algorithm, hash);
for (s = 0; s < 6; s += slot_width) {
addr = (t << 12) | ((hash & 0x1ff) << 3) | s;
pr_debug("%s physical address %d\n", __func__, addr);
idx = ((addr / 8) * 6) + (addr % 8);
pr_debug("%s logical address %d\n", __func__, idx);
rtl930x_host_route_read(idx, &route_entry);
pr_debug("%s route valid %d, route dest: %pI4, hit %d\n", __func__,
rt->attr.valid, &rt->dst_ip, rt->attr.hit);
if (!must_exist && rt->attr.valid)
return idx;
if (must_exist && route_entry.dst_ip == rt->dst_ip)
return idx;
}
}
return -1;
}
/*
* Write a prefix route into the routing table CAM at position idx
* Currently only IPv4 and IPv6 unicast routes are supported
*/
static void rtl930x_route_write(int idx, struct rtl83xx_route *rt)
{
u32 v, ip4_m;
struct in6_addr ip6_m;
// Access L3_PREFIX_ROUTE_IPUC table (2) via register RTL9300_TBL_1
// The table has a size of 11 registers (20 for MC)
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 2);
pr_debug("%s: index %d is valid: %d\n", __func__, idx, rt->attr.valid);
pr_debug("%s: nexthop: %d, hit: %d, action :%d, ttl_dec %d, ttl_check %d, dst_null %d\n",
__func__, rt->nh.id, rt->attr.hit, rt->attr.action,
rt->attr.ttl_dec, rt->attr.ttl_check, rt->attr.dst_null);
pr_debug("%s: GW: %pI4, prefix_len: %d\n", __func__, &rt->dst_ip, rt->prefix_len);
v = rt->attr.valid ? BIT(31) : 0;
v |= (rt->attr.type & 0x3) << 29;
sw_w32(v, rtl_table_data(r, 0));
v = rt->attr.hit ? BIT(22) : 0;
v |= (rt->attr.action & 0x3) << 18;
v |= (rt->nh.id & 0x7ff) << 7;
v |= rt->attr.ttl_dec ? BIT(6) : 0;
v |= rt->attr.ttl_check ? BIT(5) : 0;
v |= rt->attr.dst_null ? BIT(6) : 0;
v |= rt->attr.qos_as ? BIT(6) : 0;
v |= rt->attr.qos_prio & 0x7;
v |= rt->prefix_len == 0 ? BIT(20) : 0; // set default route bit
// set bit mask for entry type always to 0x3
sw_w32(0x3 << 29, rtl_table_data(r, 5));
switch (rt->attr.type) {
case 0: // IPv4 Unicast route
sw_w32(0, rtl_table_data(r, 1));
sw_w32(0, rtl_table_data(r, 2));
sw_w32(0, rtl_table_data(r, 3));
sw_w32(rt->dst_ip, rtl_table_data(r, 4));
v |= rt->prefix_len == 32 ? BIT(21) : 0; // set host-route bit
ip4_m = inet_make_mask(rt->prefix_len);
sw_w32(0, rtl_table_data(r, 6));
sw_w32(0, rtl_table_data(r, 7));
sw_w32(0, rtl_table_data(r, 8));
sw_w32(ip4_m, rtl_table_data(r, 9));
break;
case 2: // IPv6 Unicast route
sw_w32(rt->dst_ip6.s6_addr32[0], rtl_table_data(r, 1));
sw_w32(rt->dst_ip6.s6_addr32[1], rtl_table_data(r, 2));
sw_w32(rt->dst_ip6.s6_addr32[2], rtl_table_data(r, 3));
sw_w32(rt->dst_ip6.s6_addr32[3], rtl_table_data(r, 4));
v |= rt->prefix_len == 128 ? BIT(21) : 0; // set host-route bit
rtl930x_net6_mask(rt->prefix_len, &ip6_m);
sw_w32(ip6_m.s6_addr32[0], rtl_table_data(r, 6));
sw_w32(ip6_m.s6_addr32[1], rtl_table_data(r, 7));
sw_w32(ip6_m.s6_addr32[2], rtl_table_data(r, 8));
sw_w32(ip6_m.s6_addr32[3], rtl_table_data(r, 9));
break;
case 1: // IPv4 Multicast route
case 3: // IPv6 Multicast route
pr_warn("%s: route type not supported\n", __func__);
rtl_table_release(r);
return;
}
sw_w32(v, rtl_table_data(r, 10));
pr_debug("%s: %08x %08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", __func__,
sw_r32(rtl_table_data(r, 0)), sw_r32(rtl_table_data(r, 1)), sw_r32(rtl_table_data(r, 2)),
sw_r32(rtl_table_data(r, 3)), sw_r32(rtl_table_data(r, 4)), sw_r32(rtl_table_data(r, 5)),
sw_r32(rtl_table_data(r, 6)), sw_r32(rtl_table_data(r, 7)), sw_r32(rtl_table_data(r, 8)),
sw_r32(rtl_table_data(r, 9)), sw_r32(rtl_table_data(r, 10)));
rtl_table_write(r, idx);
rtl_table_release(r);
}
/*
* Get the destination MAC and L3 egress interface ID of a nexthop entry from
* the SoC's L3_NEXTHOP table
*/
static void rtl930x_get_l3_nexthop(int idx, u16 *dmac_id, u16 *interface)
{
u32 v;
// Read L3_NEXTHOP table (3) via register RTL9300_TBL_1
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 3);
rtl_table_read(r, idx);
// The table has a size of 1 register
v = sw_r32(rtl_table_data(r, 0));
rtl_table_release(r);
*dmac_id = (v >> 7) & 0x7fff;
*interface = v & 0x7f;
}
static int rtl930x_l3_mtu_del(struct rtl838x_switch_priv *priv, int mtu)
{
int i;
for (i = 0; i < MAX_INTF_MTUS; i++) {
if (mtu == priv->intf_mtus[i])
break;
}
if (i >= MAX_INTF_MTUS || !priv->intf_mtu_count[i]) {
pr_err("%s: No MTU slot found for MTU: %d\n", __func__, mtu);
return -EINVAL;
}
priv->intf_mtu_count[i]--;
}
static int rtl930x_l3_mtu_add(struct rtl838x_switch_priv *priv, int mtu)
{
int i, free_mtu;
int mtu_id;
// Try to find an existing mtu-value or a free slot
free_mtu = MAX_INTF_MTUS;
for (i = 0; i < MAX_INTF_MTUS && priv->intf_mtus[i] != mtu; i++) {
if ((!priv->intf_mtu_count[i]) && (free_mtu == MAX_INTF_MTUS))
free_mtu = i;
}
i = (i < MAX_INTF_MTUS) ? i : free_mtu;
if (i < MAX_INTF_MTUS) {
mtu_id = i;
} else {
pr_err("%s: No free MTU slot available!\n", __func__);
return -EINVAL;
}
priv->intf_mtus[i] = mtu;
pr_info("Writing MTU %d to slot %d\n", priv->intf_mtus[i], i);
// Set MTU-value of the slot TODO: distinguish between IPv4/IPv6 routes / slots
sw_w32_mask(0xffff << ((i % 2) * 16), priv->intf_mtus[i] << ((i % 2) * 16),
RTL930X_L3_IP_MTU_CTRL(i));
sw_w32_mask(0xffff << ((i % 2) * 16), priv->intf_mtus[i] << ((i % 2) * 16),
RTL930X_L3_IP6_MTU_CTRL(i));
priv->intf_mtu_count[i]++;
return mtu_id;
}
/*
* Creates an interface for a route by setting up the HW tables in the SoC
*/
static int rtl930x_l3_intf_add(struct rtl838x_switch_priv *priv, struct rtl838x_l3_intf *intf)
{
int i, intf_id, mtu_id;
// number of MTU-values < 16384
// Use the same IPv6 mtu as the ip4 mtu for this route if unset
intf->ip6_mtu = intf->ip6_mtu ? intf->ip6_mtu : intf->ip4_mtu;
mtu_id = rtl930x_l3_mtu_add(priv, intf->ip4_mtu);
pr_info("%s: added mtu %d with mtu-id %d\n", __func__, intf->ip4_mtu, mtu_id);
if (mtu_id < 0)
return -ENOSPC;
intf->ip4_mtu_id = mtu_id;
intf->ip6_mtu_id = mtu_id;
for (i = 0; i < MAX_INTERFACES; i++) {
if (!priv->interfaces[i])
break;
}
if (i >= MAX_INTERFACES) {
pr_err("%s: cannot find free interface entry\n", __func__);
return -EINVAL;
}
intf_id = i;
priv->interfaces[i] = kzalloc(sizeof(struct rtl838x_l3_intf), GFP_KERNEL);
if (!priv->interfaces[i]) {
pr_err("%s: no memory to allocate new interface\n", __func__);
return -ENOMEM;
}
}
/*
* Set the destination MAC and L3 egress interface ID for a nexthop entry in the SoC's
* L3_NEXTHOP table. The nexthop entry is identified by idx.
* dmac_id is the reference to the L2 entry in the L2 forwarding table, special values are
* 0x7ffe: TRAP2CPU
* 0x7ffd: TRAP2MASTERCPU
* 0x7fff: DMAC_ID_DROP
*/
static void rtl930x_set_l3_nexthop(int idx, u16 dmac_id, u16 interface)
{
// Access L3_NEXTHOP table (3) via register RTL9300_TBL_1
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 3);
pr_info("%s: Writing to L3_NEXTHOP table, index %d, dmac_id %d, interface %d\n",
__func__, idx, dmac_id, interface);
sw_w32(((dmac_id & 0x7fff) << 7) | (interface & 0x7f), rtl_table_data(r, 0));
pr_info("%s: %08x\n", __func__, sw_r32(rtl_table_data(r,0)));
rtl_table_write(r, idx);
rtl_table_release(r);
}
static void rtl930x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index)
{
int block = index / PIE_BLOCK_SIZE;
sw_w32_mask(0, BIT(block), RTL930X_PIE_BLK_LOOKUP_CTRL);
}
/*
* Reads the intermediate representation of the templated match-fields of the
* PIE rule in the pie_rule structure and fills in the raw data fields in the
* raw register space r[].
* The register space configuration size is identical for the RTL8380/90 and RTL9300,
* however the RTL9310 has 2 more registers / fields and the physical field-ids are different
* on all SoCs
* On the RTL9300 the mask fields are not word-aligend!
*/
static void rtl930x_write_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
{
int i;
enum template_field_id field_type;
u16 data, data_m;
for (i = 0; i < N_FIXED_FIELDS; i++) {
field_type = t[i];
data = data_m = 0;
switch (field_type) {
case TEMPLATE_FIELD_SPM0:
data = pr->spm;
data_m = pr->spm_m;
break;
case TEMPLATE_FIELD_SPM1:
data = pr->spm >> 16;
data_m = pr->spm_m >> 16;
break;
case TEMPLATE_FIELD_OTAG:
data = pr->otag;
data_m = pr->otag_m;
break;
case TEMPLATE_FIELD_SMAC0:
data = pr->smac[4];
data = (data << 8) | pr->smac[5];
data_m = pr->smac_m[4];
data_m = (data_m << 8) | pr->smac_m[5];
break;
case TEMPLATE_FIELD_SMAC1:
data = pr->smac[2];
data = (data << 8) | pr->smac[3];
data_m = pr->smac_m[2];
data_m = (data_m << 8) | pr->smac_m[3];
break;
case TEMPLATE_FIELD_SMAC2:
data = pr->smac[0];
data = (data << 8) | pr->smac[1];
data_m = pr->smac_m[0];
data_m = (data_m << 8) | pr->smac_m[1];
break;
case TEMPLATE_FIELD_DMAC0:
data = pr->dmac[4];
data = (data << 8) | pr->dmac[5];
data_m = pr->dmac_m[4];
data_m = (data_m << 8) | pr->dmac_m[5];
break;
case TEMPLATE_FIELD_DMAC1:
data = pr->dmac[2];
data = (data << 8) | pr->dmac[3];
data_m = pr->dmac_m[2];
data_m = (data_m << 8) | pr->dmac_m[3];
break;
case TEMPLATE_FIELD_DMAC2:
data = pr->dmac[0];
data = (data << 8) | pr->dmac[1];
data_m = pr->dmac_m[0];
data_m = (data_m << 8) | pr->dmac_m[1];
break;
case TEMPLATE_FIELD_ETHERTYPE:
data = pr->ethertype;
data_m = pr->ethertype_m;
break;
case TEMPLATE_FIELD_ITAG:
data = pr->itag;
data_m = pr->itag_m;
break;
case TEMPLATE_FIELD_SIP0:
if (pr->is_ipv6) {
data = pr->sip6.s6_addr16[7];
data_m = pr->sip6_m.s6_addr16[7];
} else {
data = pr->sip;
data_m = pr->sip_m;
}
break;
case TEMPLATE_FIELD_SIP1:
if (pr->is_ipv6) {
data = pr->sip6.s6_addr16[6];
data_m = pr->sip6_m.s6_addr16[6];
} else {
data = pr->sip >> 16;
data_m = pr->sip_m >> 16;
}
break;
case TEMPLATE_FIELD_SIP2:
case TEMPLATE_FIELD_SIP3:
case TEMPLATE_FIELD_SIP4:
case TEMPLATE_FIELD_SIP5:
case TEMPLATE_FIELD_SIP6:
case TEMPLATE_FIELD_SIP7:
data = pr->sip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
data_m = pr->sip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
break;
case TEMPLATE_FIELD_DIP0:
if (pr->is_ipv6) {
data = pr->dip6.s6_addr16[7];
data_m = pr->dip6_m.s6_addr16[7];
} else {
data = pr->dip;
data_m = pr->dip_m;
}
break;
case TEMPLATE_FIELD_DIP1:
if (pr->is_ipv6) {
data = pr->dip6.s6_addr16[6];
data_m = pr->dip6_m.s6_addr16[6];
} else {
data = pr->dip >> 16;
data_m = pr->dip_m >> 16;
}
break;
case TEMPLATE_FIELD_DIP2:
case TEMPLATE_FIELD_DIP3:
case TEMPLATE_FIELD_DIP4:
case TEMPLATE_FIELD_DIP5:
case TEMPLATE_FIELD_DIP6:
case TEMPLATE_FIELD_DIP7:
data = pr->dip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
data_m = pr->dip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
break;
case TEMPLATE_FIELD_IP_TOS_PROTO:
data = pr->tos_proto;
data_m = pr->tos_proto_m;
break;
case TEMPLATE_FIELD_L4_SPORT:
data = pr->sport;
data_m = pr->sport_m;
break;
case TEMPLATE_FIELD_L4_DPORT:
data = pr->dport;
data_m = pr->dport_m;
break;
case TEMPLATE_FIELD_DSAP_SSAP:
data = pr->dsap_ssap;
data_m = pr->dsap_ssap_m;
break;
case TEMPLATE_FIELD_TCP_INFO:
data = pr->tcp_info;
data_m = pr->tcp_info_m;
break;
case TEMPLATE_FIELD_RANGE_CHK:
pr_warn("Warning: TEMPLATE_FIELD_RANGE_CHK: not configured\n");
break;
default:
pr_info("%s: unknown field %d\n", __func__, field_type);
}
// On the RTL9300, the mask fields are not word aligned!
if (!(i % 2)) {
r[5 - i / 2] = data;
r[12 - i / 2] |= ((u32)data_m << 8);
} else {
r[5 - i / 2] |= ((u32)data) << 16;
r[12 - i / 2] |= ((u32)data_m) << 24;
r[11 - i / 2] |= ((u32)data_m) >> 8;
}
}
}
static void rtl930x_read_pie_fixed_fields(u32 r[], struct pie_rule *pr)
{
pr->stacking_port = r[6] & BIT(31);
pr->spn = (r[6] >> 24) & 0x7f;
pr->mgnt_vlan = r[6] & BIT(23);
if (pr->phase == PHASE_IACL)
pr->dmac_hit_sw = r[6] & BIT(22);
else
pr->content_too_deep = r[6] & BIT(22);
pr->not_first_frag = r[6] & BIT(21);
pr->frame_type_l4 = (r[6] >> 18) & 7;
pr->frame_type = (r[6] >> 16) & 3;
pr->otag_fmt = (r[6] >> 15) & 1;
pr->itag_fmt = (r[6] >> 14) & 1;
pr->otag_exist = (r[6] >> 13) & 1;
pr->itag_exist = (r[6] >> 12) & 1;
pr->frame_type_l2 = (r[6] >> 10) & 3;
pr->igr_normal_port = (r[6] >> 9) & 1;
pr->tid = (r[6] >> 8) & 1;
pr->stacking_port_m = r[12] & BIT(7);
pr->spn_m = r[12] & 0x7f;
pr->mgnt_vlan_m = r[13] & BIT(31);
if (pr->phase == PHASE_IACL)
pr->dmac_hit_sw_m = r[13] & BIT(30);
else
pr->content_too_deep_m = r[13] & BIT(30);
pr->not_first_frag_m = r[13] & BIT(29);
pr->frame_type_l4_m = (r[13] >> 26) & 7;
pr->frame_type_m = (r[13] >> 24) & 3;
pr->otag_fmt_m = r[13] & BIT(23);
pr->itag_fmt_m = r[13] & BIT(22);
pr->otag_exist_m = r[13] & BIT(21);
pr->itag_exist_m = r[13] & BIT (20);
pr->frame_type_l2_m = (r[13] >> 18) & 3;
pr->igr_normal_port_m = r[13] & BIT(17);
pr->tid_m = (r[13] >> 16) & 1;
pr->valid = r[13] & BIT(15);
pr->cond_not = r[13] & BIT(14);
pr->cond_and1 = r[13] & BIT(13);
pr->cond_and2 = r[13] & BIT(12);
}
static void rtl930x_write_pie_fixed_fields(u32 r[], struct pie_rule *pr)
{
r[6] = pr->stacking_port ? BIT(31) : 0;
r[6] |= ((u32) (pr->spn & 0x7f)) << 24;
r[6] |= pr->mgnt_vlan ? BIT(23) : 0;
if (pr->phase == PHASE_IACL)
r[6] |= pr->dmac_hit_sw ? BIT(22) : 0;
else
r[6] |= pr->content_too_deep ? BIT(22) : 0;
r[6] |= pr->not_first_frag ? BIT(21) : 0;
r[6] |= ((u32) (pr->frame_type_l4 & 0x7)) << 18;
r[6] |= ((u32) (pr->frame_type & 0x3)) << 16;
r[6] |= pr->otag_fmt ? BIT(15) : 0;
r[6] |= pr->itag_fmt ? BIT(14) : 0;
r[6] |= pr->otag_exist ? BIT(13) : 0;
r[6] |= pr->itag_exist ? BIT(12) : 0;
r[6] |= ((u32) (pr->frame_type_l2 & 0x3)) << 10;
r[6] |= pr->igr_normal_port ? BIT(9) : 0;
r[6] |= ((u32) (pr->tid & 0x1)) << 8;
r[12] |= pr->stacking_port_m ? BIT(7) : 0;
r[12] |= (u32) (pr->spn_m & 0x7f);
r[13] |= pr->mgnt_vlan_m ? BIT(31) : 0;
if (pr->phase == PHASE_IACL)
r[13] |= pr->dmac_hit_sw_m ? BIT(30) : 0;
else
r[13] |= pr->content_too_deep_m ? BIT(30) : 0;
r[13] |= pr->not_first_frag_m ? BIT(29) : 0;
r[13] |= ((u32) (pr->frame_type_l4_m & 0x7)) << 26;
r[13] |= ((u32) (pr->frame_type_m & 0x3)) << 24;
r[13] |= pr->otag_fmt_m ? BIT(23) : 0;
r[13] |= pr->itag_fmt_m ? BIT(22) : 0;
r[13] |= pr->otag_exist_m ? BIT(21) : 0;
r[13] |= pr->itag_exist_m ? BIT(20) : 0;
r[13] |= ((u32) (pr->frame_type_l2_m & 0x3)) << 18;
r[13] |= pr->igr_normal_port_m ? BIT(17) : 0;
r[13] |= ((u32) (pr->tid_m & 0x1)) << 16;
r[13] |= pr->valid ? BIT(15) : 0;
r[13] |= pr->cond_not ? BIT(14) : 0;
r[13] |= pr->cond_and1 ? BIT(13) : 0;
r[13] |= pr->cond_and2 ? BIT(12) : 0;
}
static void rtl930x_write_pie_action(u32 r[], struct pie_rule *pr)
{
// Either drop or forward
if (pr->drop) {
r[14] |= BIT(24) | BIT(25) | BIT(26); // Do Green, Yellow and Red drops
// Actually DROP, not PERMIT in Green / Yellow / Red
r[14] |= BIT(23) | BIT(22) | BIT(20);
} else {
r[14] |= pr->fwd_sel ? BIT(27) : 0;
r[14] |= pr->fwd_act << 18;
r[14] |= BIT(14); // We overwrite any drop
}
if (pr->phase == PHASE_VACL)
r[14] |= pr->fwd_sa_lrn ? BIT(15) : 0;
r[13] |= pr->bypass_sel ? BIT(5) : 0;
r[13] |= pr->nopri_sel ? BIT(4) : 0;
r[13] |= pr->tagst_sel ? BIT(3) : 0;
r[13] |= pr->ovid_sel ? BIT(1) : 0;
r[14] |= pr->ivid_sel ? BIT(31) : 0;
r[14] |= pr->meter_sel ? BIT(30) : 0;
r[14] |= pr->mir_sel ? BIT(29) : 0;
r[14] |= pr->log_sel ? BIT(28) : 0;
r[14] |= ((u32)(pr->fwd_data & 0x3fff)) << 3;
r[15] |= pr->log_octets ? BIT(31) : 0;
r[15] |= (u32)(pr->meter_data) << 23;
r[15] |= ((u32)(pr->ivid_act) << 21) & 0x3;
r[15] |= ((u32)(pr->ivid_data) << 9) & 0xfff;
r[16] |= ((u32)(pr->ovid_act) << 30) & 0x3;
r[16] |= ((u32)(pr->ovid_data) & 0xfff) << 16;
r[16] |= (pr->mir_data & 0x3) << 6;
r[17] |= ((u32)(pr->tagst_data) & 0xf) << 28;
r[17] |= ((u32)(pr->nopri_data) & 0x7) << 25;
r[17] |= pr->bypass_ibc_sc ? BIT(16) : 0;
}
void rtl930x_pie_rule_dump_raw(u32 r[])
{
pr_info("Raw IACL table entry:\n");
pr_info("r 0 - 7: %08x %08x %08x %08x %08x %08x %08x %08x\n",
r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7]);
pr_info("r 8 - 15: %08x %08x %08x %08x %08x %08x %08x %08x\n",
r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15]);
pr_info("r 16 - 18: %08x %08x %08x\n", r[16], r[17], r[18]);
pr_info("Match : %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5]);
pr_info("Fixed : %06x\n", r[6] >> 8);
pr_info("Match M: %08x %08x %08x %08x %08x %08x\n",
(r[6] << 24) | (r[7] >> 8), (r[7] << 24) | (r[8] >> 8), (r[8] << 24) | (r[9] >> 8),
(r[9] << 24) | (r[10] >> 8), (r[10] << 24) | (r[11] >> 8),
(r[11] << 24) | (r[12] >> 8));
pr_info("R[13]: %08x\n", r[13]);
pr_info("Fixed M: %06x\n", ((r[12] << 16) | (r[13] >> 16)) & 0xffffff);
pr_info("Valid / not / and1 / and2 : %1x\n", (r[13] >> 12) & 0xf);
pr_info("r 13-16: %08x %08x %08x %08x\n", r[13], r[14], r[15], r[16]);
}
static int rtl930x_pie_rule_write(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
{
// Access IACL table (2) via register 0
struct table_reg *q = rtl_table_get(RTL9300_TBL_0, 2);
u32 r[19];
int i;
int block = idx / PIE_BLOCK_SIZE;
u32 t_select = sw_r32(RTL930X_PIE_BLK_TMPLTE_CTRL(block));
pr_debug("%s: %d, t_select: %08x\n", __func__, idx, t_select);
for (i = 0; i < 19; i++)
r[i] = 0;
if (!pr->valid) {
rtl_table_write(q, idx);
rtl_table_release(q);
return 0;
}
rtl930x_write_pie_fixed_fields(r, pr);
pr_debug("%s: template %d\n", __func__, (t_select >> (pr->tid * 4)) & 0xf);
rtl930x_write_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 4)) & 0xf]);
rtl930x_write_pie_action(r, pr);
// rtl930x_pie_rule_dump_raw(r);
for (i = 0; i < 19; i++)
sw_w32(r[i], rtl_table_data(q, i));
rtl_table_write(q, idx);
rtl_table_release(q);
return 0;
}
static bool rtl930x_pie_templ_has(int t, enum template_field_id field_type)
{
int i;
enum template_field_id ft;
for (i = 0; i < N_FIXED_FIELDS; i++) {
ft = fixed_templates[t][i];
if (field_type == ft)
return true;
}
return false;
}
/*
* Verify that the rule pr is compatible with a given template t in block block
* Note that this function is SoC specific since the values of e.g. TEMPLATE_FIELD_SIP0
* depend on the SoC
*/
static int rtl930x_pie_verify_template(struct rtl838x_switch_priv *priv,
struct pie_rule *pr, int t, int block)
{
int i;
if (!pr->is_ipv6 && pr->sip_m && !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_SIP0))
return -1;
if (!pr->is_ipv6 && pr->dip_m && !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_DIP0))
return -1;
if (pr->is_ipv6) {
if ((pr->sip6_m.s6_addr32[0] || pr->sip6_m.s6_addr32[1]
|| pr->sip6_m.s6_addr32[2] || pr->sip6_m.s6_addr32[3])
&& !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_SIP2))
return -1;
if ((pr->dip6_m.s6_addr32[0] || pr->dip6_m.s6_addr32[1]
|| pr->dip6_m.s6_addr32[2] || pr->dip6_m.s6_addr32[3])
&& !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_DIP2))
return -1;
}
if (ether_addr_to_u64(pr->smac) && !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_SMAC0))
return -1;
if (ether_addr_to_u64(pr->dmac) && !rtl930x_pie_templ_has(t, TEMPLATE_FIELD_DMAC0))
return -1;
// TODO: Check more
i = find_first_zero_bit(&priv->pie_use_bm[block * 4], PIE_BLOCK_SIZE);
if (i >= PIE_BLOCK_SIZE)
return -1;
return i + PIE_BLOCK_SIZE * block;
}
static int rtl930x_pie_rule_add(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
{
int idx, block, j, t;
int min_block = 0;
int max_block = priv->n_pie_blocks / 2;
if (pr->is_egress) {
min_block = max_block;
max_block = priv->n_pie_blocks;
}
pr_debug("In %s\n", __func__);
mutex_lock(&priv->pie_mutex);
for (block = min_block; block < max_block; block++) {
for (j = 0; j < 2; j++) {
t = (sw_r32(RTL930X_PIE_BLK_TMPLTE_CTRL(block)) >> (j * 4)) & 0xf;
pr_debug("Testing block %d, template %d, template id %d\n", block, j, t);
pr_debug("%s: %08x\n",
__func__, sw_r32(RTL930X_PIE_BLK_TMPLTE_CTRL(block)));
idx = rtl930x_pie_verify_template(priv, pr, t, block);
if (idx >= 0)
break;
}
if (j < 2)
break;
}
if (block >= priv->n_pie_blocks) {
mutex_unlock(&priv->pie_mutex);
return -EOPNOTSUPP;
}
pr_debug("Using block: %d, index %d, template-id %d\n", block, idx, j);
set_bit(idx, priv->pie_use_bm);
pr->valid = true;
pr->tid = j; // Mapped to template number
pr->tid_m = 0x1;
pr->id = idx;
rtl930x_pie_lookup_enable(priv, idx);
rtl930x_pie_rule_write(priv, idx, pr);
mutex_unlock(&priv->pie_mutex);
return 0;
}
/*
* Delete a range of Packet Inspection Engine rules
*/
static int rtl930x_pie_rule_del(struct rtl838x_switch_priv *priv, int index_from, int index_to)
{
u32 v = (index_from << 1)| (index_to << 12 ) | BIT(0);
pr_debug("%s: from %d to %d\n", __func__, index_from, index_to);
mutex_lock(&priv->reg_mutex);
// Write from-to and execute bit into control register
sw_w32(v, RTL930X_PIE_CLR_CTRL);
// Wait until command has completed
do {
} while (sw_r32(RTL930X_PIE_CLR_CTRL) & BIT(0));
mutex_unlock(&priv->reg_mutex);
return 0;
}
static void rtl930x_pie_rule_rm(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
{
int idx = pr->id;
rtl930x_pie_rule_del(priv, idx, idx);
clear_bit(idx, priv->pie_use_bm);
}
static void rtl930x_pie_init(struct rtl838x_switch_priv *priv)
{
int i;
u32 template_selectors;
mutex_init(&priv->pie_mutex);
pr_info("%s\n", __func__);
// Enable ACL lookup on all ports, including CPU_PORT
for (i = 0; i <= priv->cpu_port; i++)
sw_w32(1, RTL930X_ACL_PORT_LOOKUP_CTRL(i));
// Include IPG in metering
sw_w32_mask(0, 1, RTL930X_METER_GLB_CTRL);
// Delete all present rules, block size is 128 on all SoC families
rtl930x_pie_rule_del(priv, 0, priv->n_pie_blocks * 128 - 1);
// Assign blocks 0-7 to VACL phase (bit = 0), blocks 8-15 to IACL (bit = 1)
sw_w32(0xff00, RTL930X_PIE_BLK_PHASE_CTRL);
// Enable predefined templates 0, 1 for first quarter of all blocks
template_selectors = 0 | (1 << 4);
for (i = 0; i < priv->n_pie_blocks / 4; i++)
sw_w32(template_selectors, RTL930X_PIE_BLK_TMPLTE_CTRL(i));
// Enable predefined templates 2, 3 for second quarter of all blocks
template_selectors = 2 | (3 << 4);
for (i = priv->n_pie_blocks / 4; i < priv->n_pie_blocks / 2; i++)
sw_w32(template_selectors, RTL930X_PIE_BLK_TMPLTE_CTRL(i));
// Enable predefined templates 0, 1 for third half of all blocks
template_selectors = 0 | (1 << 4);
for (i = priv->n_pie_blocks / 2; i < priv->n_pie_blocks * 3 / 4; i++)
sw_w32(template_selectors, RTL930X_PIE_BLK_TMPLTE_CTRL(i));
// Enable predefined templates 2, 3 for fourth quater of all blocks
template_selectors = 2 | (3 << 4);
for (i = priv->n_pie_blocks * 3 / 4; i < priv->n_pie_blocks; i++)
sw_w32(template_selectors, RTL930X_PIE_BLK_TMPLTE_CTRL(i));
}
/*
* Sets up an egress interface for L3 actions
* Actions for ip4/6_icmp_redirect, ip4/6_pbr_icmp_redirect are:
* 0: FORWARD, 1: DROP, 2: TRAP2CPU, 3: COPY2CPU, 4: TRAP2MASTERCPU 5: COPY2MASTERCPU
* 6: HARDDROP
* idx is the index in the HW interface table: idx < 0x80
*/
static void rtl930x_set_l3_egress_intf(int idx, struct rtl838x_l3_intf *intf)
{
u32 u, v;
// Read L3_EGR_INTF table (4) via register RTL9300_TBL_1
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 4);
// The table has 2 registers
u = (intf->vid & 0xfff) << 9;
u |= (intf->smac_idx & 0x3f) << 3;
u |= (intf->ip4_mtu_id & 0x7);
v = (intf->ip6_mtu_id & 0x7) << 28;
v |= (intf->ttl_scope & 0xff) << 20;
v |= (intf->hl_scope & 0xff) << 12;
v |= (intf->ip4_icmp_redirect & 0x7) << 9;
v |= (intf->ip6_icmp_redirect & 0x7)<< 6;
v |= (intf->ip4_pbr_icmp_redirect & 0x7) << 3;
v |= (intf->ip6_pbr_icmp_redirect & 0x7);
sw_w32(u, rtl_table_data(r, 0));
sw_w32(v, rtl_table_data(r, 1));
pr_info("%s writing to index %d: %08x %08x\n", __func__, idx, u, v);
rtl_table_write(r, idx & 0x7f);
rtl_table_release(r);
}
/*
* Reads a MAC entry for L3 termination as entry point for routing
* from the hardware table
* idx is the index into the L3_ROUTER_MAC table
*/
static void rtl930x_get_l3_router_mac(u32 idx, struct rtl93xx_rt_mac *m)
{
u32 v, w;
// Read L3_ROUTER_MAC table (0) via register RTL9300_TBL_1
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 0);
rtl_table_read(r, idx);
// The table has a size of 7 registers, 64 entries
v = sw_r32(rtl_table_data(r, 0));
w = sw_r32(rtl_table_data(r, 3));
m->valid = !!(v & BIT(20));
if (!m->valid)
goto out;
m->p_type = !!(v & BIT(19));
m->p_id = (v >> 13) & 0x3f; // trunk id of port
m->vid = v & 0xfff;
m->vid_mask = w & 0xfff;
m->action = sw_r32(rtl_table_data(r, 6)) & 0x7;
m->mac_mask = ((((u64)sw_r32(rtl_table_data(r, 5))) << 32) & 0xffffffffffffULL)
| (sw_r32(rtl_table_data(r, 4)));
m->mac = ((((u64)sw_r32(rtl_table_data(r, 1))) << 32) & 0xffffffffffffULL)
| (sw_r32(rtl_table_data(r, 2)));
// Bits L3_INTF and BMSK_L3_INTF are 0
out:
rtl_table_release(r);
}
/*
* Writes a MAC entry for L3 termination as entry point for routing
* into the hardware table
* idx is the index into the L3_ROUTER_MAC table
*/
static void rtl930x_set_l3_router_mac(u32 idx, struct rtl93xx_rt_mac *m)
{
u32 v, w;
// Read L3_ROUTER_MAC table (0) via register RTL9300_TBL_1
struct table_reg *r = rtl_table_get(RTL9300_TBL_1, 0);
// The table has a size of 7 registers, 64 entries
v = BIT(20); // mac entry valid, port type is 0: individual
v |= (m->p_id & 0x3f) << 13;
v |= (m->vid & 0xfff); // Set the interface_id to the vlan id
w = m->vid_mask;
w |= (m->p_id_mask & 0x3f) << 13;
sw_w32(v, rtl_table_data(r, 0));
sw_w32(w, rtl_table_data(r, 3));
// Set MAC address, L3_INTF (bit 12 in register 1) needs to be 0
sw_w32((u32)(m->mac), rtl_table_data(r, 2));
sw_w32(m->mac >> 32, rtl_table_data(r, 1));
// Set MAC address mask, BMSK_L3_INTF (bit 12 in register 5) needs to be 0
sw_w32((u32)(m->mac_mask >> 32), rtl_table_data(r, 4));
sw_w32((u32)m->mac_mask, rtl_table_data(r, 5));
sw_w32(m->action & 0x7, rtl_table_data(r, 6));
pr_debug("%s writing index %d: %08x %08x %08x %08x %08x %08x %08x\n", __func__, idx,
sw_r32(rtl_table_data(r, 0)), sw_r32(rtl_table_data(r, 1)), sw_r32(rtl_table_data(r, 2)),
sw_r32(rtl_table_data(r, 3)), sw_r32(rtl_table_data(r, 4)), sw_r32(rtl_table_data(r, 5)),
sw_r32(rtl_table_data(r, 6))
);
rtl_table_write(r, idx);
rtl_table_release(r);
}
/*
* Get the Destination-MAC of an L3 egress interface or the Source MAC for routed packets
* from the SoC's L3_EGR_INTF_MAC table
* Indexes 0-2047 are DMACs, 2048+ are SMACs
*/
static u64 rtl930x_get_l3_egress_mac(u32 idx)
{
u64 mac;
// Read L3_EGR_INTF_MAC table (2) via register RTL9300_TBL_2
struct table_reg *r = rtl_table_get(RTL9300_TBL_2, 2);
rtl_table_read(r, idx);
// The table has a size of 2 registers
mac = sw_r32(rtl_table_data(r, 0));
mac <<= 32;
mac |= sw_r32(rtl_table_data(r, 1));
rtl_table_release(r);
return mac;
}
/*
* Set the Destination-MAC of a route or the Source MAC of an L3 egress interface
* in the SoC's L3_EGR_INTF_MAC table
* Indexes 0-2047 are DMACs, 2048+ are SMACs
*/
static void rtl930x_set_l3_egress_mac(u32 idx, u64 mac)
{
// Access L3_EGR_INTF_MAC table (2) via register RTL9300_TBL_2
struct table_reg *r = rtl_table_get(RTL9300_TBL_2, 2);
// The table has a size of 2 registers
sw_w32(mac >> 32, rtl_table_data(r, 0));
sw_w32(mac, rtl_table_data(r, 1));
pr_debug("%s: setting index %d to %016llx\n", __func__, idx, mac);
rtl_table_write(r, idx);
rtl_table_release(r);
}
/*
* Configure L3 routing settings of the device:
* - MTUs
* - Egress interface
* - The router's MAC address on which routed packets are expected
* - MAC addresses used as source macs of routed packets
*/
int rtl930x_l3_setup(struct rtl838x_switch_priv *priv)
{
int i;
// Setup MTU with id 0 for default interface
for (i = 0; i < MAX_INTF_MTUS; i++)
priv->intf_mtu_count[i] = priv->intf_mtus[i] = 0;
priv->intf_mtu_count[0] = 0; // Needs to stay forever
priv->intf_mtus[0] = DEFAULT_MTU;
sw_w32_mask(0xffff, DEFAULT_MTU, RTL930X_L3_IP_MTU_CTRL(0));
sw_w32_mask(0xffff, DEFAULT_MTU, RTL930X_L3_IP6_MTU_CTRL(0));
priv->intf_mtus[1] = DEFAULT_MTU;
sw_w32_mask(0xffff0000, DEFAULT_MTU << 16, RTL930X_L3_IP_MTU_CTRL(0));
sw_w32_mask(0xffff0000, DEFAULT_MTU << 16, RTL930X_L3_IP6_MTU_CTRL(0));
sw_w32_mask(0xffff, DEFAULT_MTU, RTL930X_L3_IP_MTU_CTRL(1));
sw_w32_mask(0xffff, DEFAULT_MTU, RTL930X_L3_IP6_MTU_CTRL(1));
sw_w32_mask(0xffff0000, DEFAULT_MTU << 16, RTL930X_L3_IP_MTU_CTRL(1));
sw_w32_mask(0xffff0000, DEFAULT_MTU << 16, RTL930X_L3_IP6_MTU_CTRL(1));
// Clear all source port MACs
for (i = 0; i < MAX_SMACS; i++)
rtl930x_set_l3_egress_mac(L3_EGRESS_DMACS + i, 0ULL);
// Configure the default L3 hash algorithm
sw_w32_mask(BIT(2), 0, RTL930X_L3_HOST_TBL_CTRL); // Algorithm selection 0 = 0
sw_w32_mask(0, BIT(3), RTL930X_L3_HOST_TBL_CTRL); // Algorithm selection 1 = 1
pr_info("L3_IPUC_ROUTE_CTRL %08x, IPMC_ROUTE %08x, IP6UC_ROUTE %08x, IP6MC_ROUTE %08x\n",
sw_r32(RTL930X_L3_IPUC_ROUTE_CTRL), sw_r32(RTL930X_L3_IPMC_ROUTE_CTRL),
sw_r32(RTL930X_L3_IP6UC_ROUTE_CTRL), sw_r32(RTL930X_L3_IP6MC_ROUTE_CTRL));
sw_w32_mask(0, 1, RTL930X_L3_IPUC_ROUTE_CTRL);
sw_w32_mask(0, 1, RTL930X_L3_IP6UC_ROUTE_CTRL);
sw_w32_mask(0, 1, RTL930X_L3_IPMC_ROUTE_CTRL);
sw_w32_mask(0, 1, RTL930X_L3_IP6MC_ROUTE_CTRL);
sw_w32(0x00002001, RTL930X_L3_IPUC_ROUTE_CTRL);
sw_w32(0x00014581, RTL930X_L3_IP6UC_ROUTE_CTRL);
sw_w32(0x00000501, RTL930X_L3_IPMC_ROUTE_CTRL);
sw_w32(0x00012881, RTL930X_L3_IP6MC_ROUTE_CTRL);
pr_info("L3_IPUC_ROUTE_CTRL %08x, IPMC_ROUTE %08x, IP6UC_ROUTE %08x, IP6MC_ROUTE %08x\n",
sw_r32(RTL930X_L3_IPUC_ROUTE_CTRL), sw_r32(RTL930X_L3_IPMC_ROUTE_CTRL),
sw_r32(RTL930X_L3_IP6UC_ROUTE_CTRL), sw_r32(RTL930X_L3_IP6MC_ROUTE_CTRL));
// Trap non-ip traffic to the CPU-port (e.g. ARP so we stay reachable)
sw_w32_mask(0x3 << 8, 0x1 << 8, RTL930X_L3_IP_ROUTE_CTRL);
pr_info("L3_IP_ROUTE_CTRL %08x\n", sw_r32(RTL930X_L3_IP_ROUTE_CTRL));
// PORT_ISO_RESTRICT_ROUTE_CTRL ?
// Do not use prefix route 0 because of HW limitations
set_bit(0, priv->route_use_bm);
return 0;
}
static u32 rtl930x_packet_cntr_read(int counter)
{
u32 v;
// Read LOG table (3) via register RTL9300_TBL_0
struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 3);
pr_debug("In %s, id %d\n", __func__, counter);
rtl_table_read(r, counter / 2);
pr_debug("Registers: %08x %08x\n",
sw_r32(rtl_table_data(r, 0)), sw_r32(rtl_table_data(r, 1)));
// The table has a size of 2 registers
if (counter % 2)
v = sw_r32(rtl_table_data(r, 0));
else
v = sw_r32(rtl_table_data(r, 1));
rtl_table_release(r);
return v;
}
static void rtl930x_packet_cntr_clear(int counter)
{
// Access LOG table (3) via register RTL9300_TBL_0
struct table_reg *r = rtl_table_get(RTL9300_TBL_0, 3);
pr_info("In %s, id %d\n", __func__, counter);
// The table has a size of 2 registers
if (counter % 2)
sw_w32(0, rtl_table_data(r, 0));
else
sw_w32(0, rtl_table_data(r, 1));
rtl_table_write(r, counter / 2);
rtl_table_release(r);
}
const struct rtl838x_reg rtl930x_reg = {
.mask_port_reg_be = rtl838x_mask_port_reg,
.set_port_reg_be = rtl838x_set_port_reg,
.get_port_reg_be = rtl838x_get_port_reg,
.mask_port_reg_le = rtl838x_mask_port_reg,
.set_port_reg_le = rtl838x_set_port_reg,
.get_port_reg_le = rtl838x_get_port_reg,
.stat_port_rst = RTL930X_STAT_PORT_RST,
.stat_rst = RTL930X_STAT_RST,
.stat_port_std_mib = RTL930X_STAT_PORT_MIB_CNTR,
.traffic_enable = rtl930x_traffic_enable,
.traffic_disable = rtl930x_traffic_disable,
.traffic_get = rtl930x_traffic_get,
.traffic_set = rtl930x_traffic_set,
.l2_ctrl_0 = RTL930X_L2_CTRL,
.l2_ctrl_1 = RTL930X_L2_AGE_CTRL,
.l2_port_aging_out = RTL930X_L2_PORT_AGE_CTRL,
.smi_poll_ctrl = RTL930X_SMI_POLL_CTRL, // TODO: Difference to RTL9300_SMI_PRVTE_POLLING_CTRL
.l2_tbl_flush_ctrl = RTL930X_L2_TBL_FLUSH_CTRL,
.exec_tbl0_cmd = rtl930x_exec_tbl0_cmd,
.exec_tbl1_cmd = rtl930x_exec_tbl1_cmd,
.tbl_access_data_0 = rtl930x_tbl_access_data_0,
.isr_glb_src = RTL930X_ISR_GLB,
.isr_port_link_sts_chg = RTL930X_ISR_PORT_LINK_STS_CHG,
.imr_port_link_sts_chg = RTL930X_IMR_PORT_LINK_STS_CHG,
.imr_glb = RTL930X_IMR_GLB,
.vlan_tables_read = rtl930x_vlan_tables_read,
.vlan_set_tagged = rtl930x_vlan_set_tagged,
.vlan_set_untagged = rtl930x_vlan_set_untagged,
.vlan_profile_dump = rtl930x_vlan_profile_dump,
.vlan_profile_setup = rtl930x_vlan_profile_setup,
.vlan_fwd_on_inner = rtl930x_vlan_fwd_on_inner,
.stp_get = rtl930x_stp_get,
.stp_set = rtl930x_stp_set,
.mac_force_mode_ctrl = rtl930x_mac_force_mode_ctrl,
.mac_port_ctrl = rtl930x_mac_port_ctrl,
.l2_port_new_salrn = rtl930x_l2_port_new_salrn,
.l2_port_new_sa_fwd = rtl930x_l2_port_new_sa_fwd,
.mir_ctrl = RTL930X_MIR_CTRL,
.mir_dpm = RTL930X_MIR_DPM_CTRL,
.mir_spm = RTL930X_MIR_SPM_CTRL,
.mac_link_sts = RTL930X_MAC_LINK_STS,
.mac_link_dup_sts = RTL930X_MAC_LINK_DUP_STS,
.mac_link_spd_sts = rtl930x_mac_link_spd_sts,
.mac_rx_pause_sts = RTL930X_MAC_RX_PAUSE_STS,
.mac_tx_pause_sts = RTL930X_MAC_TX_PAUSE_STS,
.read_l2_entry_using_hash = rtl930x_read_l2_entry_using_hash,
.write_l2_entry_using_hash = rtl930x_write_l2_entry_using_hash,
.read_cam = rtl930x_read_cam,
.write_cam = rtl930x_write_cam,
.vlan_port_egr_filter = RTL930X_VLAN_PORT_EGR_FLTR,
.vlan_port_igr_filter = RTL930X_VLAN_PORT_IGR_FLTR,
.vlan_port_pb = RTL930X_VLAN_PORT_PB_VLAN,
.vlan_port_tag_sts_ctrl = RTL930X_VLAN_PORT_TAG_STS_CTRL,
.trk_mbr_ctr = rtl930x_trk_mbr_ctr,
.rma_bpdu_fld_pmask = RTL930X_RMA_BPDU_FLD_PMSK,
.init_eee = rtl930x_init_eee,
.port_eee_set = rtl930x_port_eee_set,
.eee_port_ability = rtl930x_eee_port_ability,
.l2_hash_seed = rtl930x_l2_hash_seed,
.l2_hash_key = rtl930x_l2_hash_key,
.read_mcast_pmask = rtl930x_read_mcast_pmask,
.write_mcast_pmask = rtl930x_write_mcast_pmask,
.pie_init = rtl930x_pie_init,
.pie_rule_write = rtl930x_pie_rule_write,
.pie_rule_add = rtl930x_pie_rule_add,
.pie_rule_rm = rtl930x_pie_rule_rm,
.l2_learning_setup = rtl930x_l2_learning_setup,
.packet_cntr_read = rtl930x_packet_cntr_read,
.packet_cntr_clear = rtl930x_packet_cntr_clear,
.route_read = rtl930x_route_read,
.route_write = rtl930x_route_write,
.host_route_write = rtl930x_host_route_write,
.l3_setup = rtl930x_l3_setup,
.set_l3_nexthop = rtl930x_set_l3_nexthop,
.get_l3_nexthop = rtl930x_get_l3_nexthop,
.get_l3_egress_mac = rtl930x_get_l3_egress_mac,
.set_l3_egress_mac = rtl930x_set_l3_egress_mac,
.find_l3_slot = rtl930x_find_l3_slot,
.route_lookup_hw = rtl930x_route_lookup_hw,
.get_l3_router_mac = rtl930x_get_l3_router_mac,
.set_l3_router_mac = rtl930x_set_l3_router_mac,
.set_l3_egress_intf = rtl930x_set_l3_egress_intf,
};