difos/target/linux/realtek/files-5.10/drivers/net/dsa/rtl83xx/common.c
Bjørn Mork d990f805c0 realtek: re-enable IPv6 routing
Commit 03e1d93e07 ("realtek: add driver support for routing
offload") added routing offload for IPv4, but broke IPv6 routing
completely.  The routing table is empty and cannot be updated:

 root@gs1900-10hp:~# ip -6 route
 root@gs1900-10hp:~# ip -6 route add unreachable default
 RTNETLINK answers: Invalid argument

As a side effect, this breaks opkg on IPv4 only systems too,
since uclient-fetch fails when there are no IPv6 routes:

 root@gs1900-10hp:~# uclient-fetch http://192.168.99.1
 Downloading 'http://192.168.99.1'
 Failed to send request: Operation not permitted

Fix by returning NOTIFY_DONE when offloading is unsupported, falling
back to default behaviour.

Fixes: 03e1d93e07 ("realtek: add driver support for routing offload")
Signed-off-by: Bjørn Mork <bjorn@mork.no>
2021-10-30 15:00:22 +02:00

1616 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/of_mdio.h>
#include <linux/of_platform.h>
#include <net/arp.h>
#include <net/nexthop.h>
#include <net/neighbour.h>
#include <net/netevent.h>
#include <linux/inetdevice.h>
#include <linux/rhashtable.h>
#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include "rtl83xx.h"
extern struct rtl83xx_soc_info soc_info;
extern const struct rtl838x_reg rtl838x_reg;
extern const struct rtl838x_reg rtl839x_reg;
extern const struct rtl838x_reg rtl930x_reg;
extern const struct rtl838x_reg rtl931x_reg;
extern const struct dsa_switch_ops rtl83xx_switch_ops;
extern const struct dsa_switch_ops rtl930x_switch_ops;
DEFINE_MUTEX(smi_lock);
int rtl83xx_port_get_stp_state(struct rtl838x_switch_priv *priv, int port)
{
u32 msti = 0;
u32 port_state[4];
int index, bit;
int pos = port;
int n = priv->port_width << 1;
/* Ports above or equal CPU port can never be configured */
if (port >= priv->cpu_port)
return -1;
mutex_lock(&priv->reg_mutex);
/* For the RTL839x and following, the bits are left-aligned in the 64/128 bit field */
if (priv->family_id == RTL8390_FAMILY_ID)
pos += 12;
if (priv->family_id == RTL9300_FAMILY_ID)
pos += 3;
if (priv->family_id == RTL9310_FAMILY_ID)
pos += 8;
index = n - (pos >> 4) - 1;
bit = (pos << 1) % 32;
priv->r->stp_get(priv, msti, port_state);
mutex_unlock(&priv->reg_mutex);
return (port_state[index] >> bit) & 3;
}
static struct table_reg rtl838x_tbl_regs[] = {
TBL_DESC(0x6900, 0x6908, 3, 15, 13, 1), // RTL8380_TBL_L2
TBL_DESC(0x6914, 0x6918, 18, 14, 12, 1), // RTL8380_TBL_0
TBL_DESC(0xA4C8, 0xA4CC, 6, 14, 12, 1), // RTL8380_TBL_1
TBL_DESC(0x1180, 0x1184, 3, 16, 14, 0), // RTL8390_TBL_L2
TBL_DESC(0x1190, 0x1194, 17, 15, 12, 0), // RTL8390_TBL_0
TBL_DESC(0x6B80, 0x6B84, 4, 14, 12, 0), // RTL8390_TBL_1
TBL_DESC(0x611C, 0x6120, 9, 8, 6, 0), // RTL8390_TBL_2
TBL_DESC(0xB320, 0xB334, 3, 18, 16, 0), // RTL9300_TBL_L2
TBL_DESC(0xB340, 0xB344, 19, 16, 12, 0), // RTL9300_TBL_0
TBL_DESC(0xB3A0, 0xB3A4, 20, 16, 13, 0), // RTL9300_TBL_1
TBL_DESC(0xCE04, 0xCE08, 6, 14, 12, 0), // RTL9300_TBL_2
TBL_DESC(0xD600, 0xD604, 30, 7, 6, 0), // RTL9300_TBL_HSB
TBL_DESC(0x7880, 0x7884, 22, 9, 8, 0), // RTL9300_TBL_HSA
TBL_DESC(0x8500, 0x8508, 8, 19, 15, 0), // RTL9310_TBL_0
TBL_DESC(0x40C0, 0x40C4, 22, 16, 14, 0), // RTL9310_TBL_1
TBL_DESC(0x8528, 0x852C, 6, 18, 14, 0), // RTL9310_TBL_2
TBL_DESC(0x0200, 0x0204, 9, 15, 12, 0), // RTL9310_TBL_3
TBL_DESC(0x20dc, 0x20e0, 29, 7, 6, 0), // RTL9310_TBL_4
TBL_DESC(0x7e1c, 0x7e20, 53, 8, 6, 0), // RTL9310_TBL_5
};
void rtl_table_init(void)
{
int i;
for (i = 0; i < RTL_TBL_END; i++)
mutex_init(&rtl838x_tbl_regs[i].lock);
}
/*
* Request access to table t in table access register r
* Returns a handle to a lock for that table
*/
struct table_reg *rtl_table_get(rtl838x_tbl_reg_t r, int t)
{
if (r >= RTL_TBL_END)
return NULL;
if (t >= BIT(rtl838x_tbl_regs[r].c_bit-rtl838x_tbl_regs[r].t_bit))
return NULL;
mutex_lock(&rtl838x_tbl_regs[r].lock);
rtl838x_tbl_regs[r].tbl = t;
return &rtl838x_tbl_regs[r];
}
/*
* Release a table r, unlock the corresponding lock
*/
void rtl_table_release(struct table_reg *r)
{
if (!r)
return;
// pr_info("Unlocking %08x\n", (u32)r);
mutex_unlock(&r->lock);
// pr_info("Unlock done\n");
}
/*
* Reads table index idx into the data registers of the table
*/
void rtl_table_read(struct table_reg *r, int idx)
{
u32 cmd = r->rmode ? BIT(r->c_bit) : 0;
cmd |= BIT(r->c_bit + 1) | (r->tbl << r->t_bit) | (idx & (BIT(r->t_bit) - 1));
sw_w32(cmd, r->addr);
do { } while (sw_r32(r->addr) & BIT(r->c_bit + 1));
}
/*
* Writes the content of the table data registers into the table at index idx
*/
void rtl_table_write(struct table_reg *r, int idx)
{
u32 cmd = r->rmode ? 0 : BIT(r->c_bit);
cmd |= BIT(r->c_bit + 1) | (r->tbl << r->t_bit) | (idx & (BIT(r->t_bit) - 1));
sw_w32(cmd, r->addr);
do { } while (sw_r32(r->addr) & BIT(r->c_bit + 1));
}
/*
* Returns the address of the ith data register of table register r
* the address is relative to the beginning of the Switch-IO block at 0xbb000000
*/
inline u16 rtl_table_data(struct table_reg *r, int i)
{
if (i >= r->max_data)
i = r->max_data - 1;
return r->data + i * 4;
}
inline u32 rtl_table_data_r(struct table_reg *r, int i)
{
return sw_r32(rtl_table_data(r, i));
}
inline void rtl_table_data_w(struct table_reg *r, u32 v, int i)
{
sw_w32(v, rtl_table_data(r, i));
}
/* Port register accessor functions for the RTL838x and RTL930X SoCs */
void rtl838x_mask_port_reg(u64 clear, u64 set, int reg)
{
sw_w32_mask((u32)clear, (u32)set, reg);
}
void rtl838x_set_port_reg(u64 set, int reg)
{
sw_w32((u32)set, reg);
}
u64 rtl838x_get_port_reg(int reg)
{
return ((u64) sw_r32(reg));
}
/* Port register accessor functions for the RTL839x and RTL931X SoCs */
void rtl839x_mask_port_reg_be(u64 clear, u64 set, int reg)
{
sw_w32_mask((u32)(clear >> 32), (u32)(set >> 32), reg);
sw_w32_mask((u32)(clear & 0xffffffff), (u32)(set & 0xffffffff), reg + 4);
}
u64 rtl839x_get_port_reg_be(int reg)
{
u64 v = sw_r32(reg);
v <<= 32;
v |= sw_r32(reg + 4);
return v;
}
void rtl839x_set_port_reg_be(u64 set, int reg)
{
sw_w32(set >> 32, reg);
sw_w32(set & 0xffffffff, reg + 4);
}
void rtl839x_mask_port_reg_le(u64 clear, u64 set, int reg)
{
sw_w32_mask((u32)clear, (u32)set, reg);
sw_w32_mask((u32)(clear >> 32), (u32)(set >> 32), reg + 4);
}
void rtl839x_set_port_reg_le(u64 set, int reg)
{
sw_w32(set, reg);
sw_w32(set >> 32, reg + 4);
}
u64 rtl839x_get_port_reg_le(int reg)
{
u64 v = sw_r32(reg + 4);
v <<= 32;
v |= sw_r32(reg);
return v;
}
int read_phy(u32 port, u32 page, u32 reg, u32 *val)
{
switch (soc_info.family) {
case RTL8380_FAMILY_ID:
return rtl838x_read_phy(port, page, reg, val);
case RTL8390_FAMILY_ID:
return rtl839x_read_phy(port, page, reg, val);
case RTL9300_FAMILY_ID:
return rtl930x_read_phy(port, page, reg, val);
case RTL9310_FAMILY_ID:
return rtl931x_read_phy(port, page, reg, val);
}
return -1;
}
int write_phy(u32 port, u32 page, u32 reg, u32 val)
{
switch (soc_info.family) {
case RTL8380_FAMILY_ID:
return rtl838x_write_phy(port, page, reg, val);
case RTL8390_FAMILY_ID:
return rtl839x_write_phy(port, page, reg, val);
case RTL9300_FAMILY_ID:
return rtl930x_write_phy(port, page, reg, val);
case RTL9310_FAMILY_ID:
return rtl931x_write_phy(port, page, reg, val);
}
return -1;
}
static int __init rtl83xx_mdio_probe(struct rtl838x_switch_priv *priv)
{
struct device *dev = priv->dev;
struct device_node *dn, *mii_np = dev->of_node;
struct mii_bus *bus;
int ret;
u32 pn;
pr_debug("In %s\n", __func__);
mii_np = of_find_compatible_node(NULL, NULL, "realtek,rtl838x-mdio");
if (mii_np) {
pr_debug("Found compatible MDIO node!\n");
} else {
dev_err(priv->dev, "no %s child node found", "mdio-bus");
return -ENODEV;
}
priv->mii_bus = of_mdio_find_bus(mii_np);
if (!priv->mii_bus) {
pr_debug("Deferring probe of mdio bus\n");
return -EPROBE_DEFER;
}
if (!of_device_is_available(mii_np))
ret = -ENODEV;
bus = devm_mdiobus_alloc(priv->ds->dev);
if (!bus)
return -ENOMEM;
bus->name = "rtl838x slave mii";
/*
* Since the NIC driver is loaded first, we can use the mdio rw functions
* assigned there.
*/
bus->read = priv->mii_bus->read;
bus->write = priv->mii_bus->write;
snprintf(bus->id, MII_BUS_ID_SIZE, "%s-%d", bus->name, dev->id);
bus->parent = dev;
priv->ds->slave_mii_bus = bus;
priv->ds->slave_mii_bus->priv = priv;
ret = mdiobus_register(priv->ds->slave_mii_bus);
if (ret && mii_np) {
of_node_put(dn);
return ret;
}
dn = mii_np;
for_each_node_by_name(dn, "ethernet-phy") {
if (of_property_read_u32(dn, "reg", &pn))
continue;
// Check for the integrated SerDes of the RTL8380M first
if (of_property_read_bool(dn, "phy-is-integrated") && priv->id == 0x8380 && pn >= 24) {
pr_debug("----> FÓUND A SERDES\n");
priv->ports[pn].phy = PHY_RTL838X_SDS;
continue;
}
if (of_property_read_bool(dn, "phy-is-integrated") && !of_property_read_bool(dn, "sfp")) {
priv->ports[pn].phy = PHY_RTL8218B_INT;
continue;
}
if (!of_property_read_bool(dn, "phy-is-integrated") && of_property_read_bool(dn, "sfp")) {
priv->ports[pn].phy = PHY_RTL8214FC;
continue;
}
if (!of_property_read_bool(dn, "phy-is-integrated") && !of_property_read_bool(dn, "sfp")) {
priv->ports[pn].phy = PHY_RTL8218B_EXT;
continue;
}
}
// TODO: Do this needs to come from the .dts
if (priv->family_id == RTL9300_FAMILY_ID) {
priv->ports[24].is2G5 = true;
priv->ports[25].is2G5 = true;
}
/* Disable MAC polling the PHY so that we can start configuration */
priv->r->set_port_reg_le(0ULL, priv->r->smi_poll_ctrl);
/* Enable PHY control via SoC */
if (priv->family_id == RTL8380_FAMILY_ID) {
/* Enable SerDes NWAY and PHY control via SoC */
sw_w32_mask(BIT(7), BIT(15), RTL838X_SMI_GLB_CTRL);
} else if (priv->family_id == RTL8390_FAMILY_ID) {
/* Disable PHY polling via SoC */
sw_w32_mask(BIT(7), 0, RTL839X_SMI_GLB_CTRL);
}
/* Power on fibre ports and reset them if necessary */
if (priv->ports[24].phy == PHY_RTL838X_SDS) {
pr_debug("Powering on fibre ports & reset\n");
rtl8380_sds_power(24, 1);
rtl8380_sds_power(26, 1);
}
pr_debug("%s done\n", __func__);
return 0;
}
static int __init rtl83xx_get_l2aging(struct rtl838x_switch_priv *priv)
{
int t = sw_r32(priv->r->l2_ctrl_1);
t &= priv->family_id == RTL8380_FAMILY_ID ? 0x7fffff : 0x1FFFFF;
if (priv->family_id == RTL8380_FAMILY_ID)
t = t * 128 / 625; /* Aging time in seconds. 0: L2 aging disabled */
else
t = (t * 3) / 5;
pr_debug("L2 AGING time: %d sec\n", t);
pr_debug("Dynamic aging for ports: %x\n", sw_r32(priv->r->l2_port_aging_out));
return t;
}
/* Caller must hold priv->reg_mutex */
int rtl83xx_lag_add(struct dsa_switch *ds, int group, int port)
{
struct rtl838x_switch_priv *priv = ds->priv;
int i;
pr_info("%s: Adding port %d to LA-group %d\n", __func__, port, group);
if (group >= priv->n_lags) {
pr_err("Link Agrregation group too large.\n");
return -EINVAL;
}
if (port >= priv->cpu_port) {
pr_err("Invalid port number.\n");
return -EINVAL;
}
for (i = 0; i < priv->n_lags; i++) {
if (priv->lags_port_members[i] & BIT_ULL(i))
break;
}
if (i != priv->n_lags) {
pr_err("%s: Port already member of LAG: %d\n", __func__, i);
return -ENOSPC;
}
priv->r->mask_port_reg_be(0, BIT_ULL(port), priv->r->trk_mbr_ctr(group));
priv->lags_port_members[group] |= BIT_ULL(port);
pr_info("lags_port_members %d now %016llx\n", group, priv->lags_port_members[group]);
return 0;
}
/* Caller must hold priv->reg_mutex */
int rtl83xx_lag_del(struct dsa_switch *ds, int group, int port)
{
struct rtl838x_switch_priv *priv = ds->priv;
pr_info("%s: Removing port %d from LA-group %d\n", __func__, port, group);
if (group >= priv->n_lags) {
pr_err("Link Agrregation group too large.\n");
return -EINVAL;
}
if (port >= priv->cpu_port) {
pr_err("Invalid port number.\n");
return -EINVAL;
}
if (!(priv->lags_port_members[group] & BIT_ULL(port))) {
pr_err("%s: Port not member of LAG: %d\n", __func__, group
);
return -ENOSPC;
}
priv->r->mask_port_reg_be(BIT_ULL(port), 0, priv->r->trk_mbr_ctr(group));
priv->lags_port_members[group] &= ~BIT_ULL(port);
pr_info("lags_port_members %d now %016llx\n", group, priv->lags_port_members[group]);
return 0;
}
/*
* Allocate a 64 bit octet counter located in the LOG HW table
*/
static int rtl83xx_octet_cntr_alloc(struct rtl838x_switch_priv *priv)
{
int idx;
mutex_lock(&priv->reg_mutex);
idx = find_first_zero_bit(priv->octet_cntr_use_bm, MAX_COUNTERS);
if (idx >= priv->n_counters) {
mutex_unlock(&priv->reg_mutex);
return -1;
}
set_bit(idx, priv->octet_cntr_use_bm);
mutex_unlock(&priv->reg_mutex);
return idx;
}
/*
* Allocate a 32-bit packet counter
* 2 32-bit packet counters share the location of a 64-bit octet counter
* Initially there are no free packet counters and 2 new ones need to be freed
* by allocating the corresponding octet counter
*/
int rtl83xx_packet_cntr_alloc(struct rtl838x_switch_priv *priv)
{
int idx, j;
mutex_lock(&priv->reg_mutex);
/* Because initially no packet counters are free, the logic is reversed:
* a 0-bit means the counter is already allocated (for octets)
*/
idx = find_first_bit(priv->packet_cntr_use_bm, MAX_COUNTERS * 2);
if (idx >= priv->n_counters * 2) {
j = find_first_zero_bit(priv->octet_cntr_use_bm, MAX_COUNTERS);
if (j >= priv->n_counters) {
mutex_unlock(&priv->reg_mutex);
return -1;
}
set_bit(j, priv->octet_cntr_use_bm);
idx = j * 2;
set_bit(j * 2 + 1, priv->packet_cntr_use_bm);
} else {
clear_bit(idx, priv->packet_cntr_use_bm);
}
mutex_unlock(&priv->reg_mutex);
return idx;
}
/*
* Add an L2 nexthop entry for the L3 routing system / PIE forwarding in the SoC
* Use VID and MAC in rtl838x_l2_entry to identify either a free slot in the L2 hash table
* or mark an existing entry as a nexthop by setting it's nexthop bit
* Called from the L3 layer
* The index in the L2 hash table is filled into nh->l2_id;
*/
int rtl83xx_l2_nexthop_add(struct rtl838x_switch_priv *priv, struct rtl83xx_nexthop *nh)
{
struct rtl838x_l2_entry e;
u64 seed = priv->r->l2_hash_seed(nh->mac, nh->rvid);
u32 key = priv->r->l2_hash_key(priv, seed);
int i, idx = -1;
u64 entry;
pr_debug("%s searching for %08llx vid %d with key %d, seed: %016llx\n",
__func__, nh->mac, nh->rvid, key, seed);
e.type = L2_UNICAST;
u64_to_ether_addr(nh->mac, &e.mac[0]);
e.port = nh->port;
// Loop over all entries in the hash-bucket and over the second block on 93xx SoCs
for (i = 0; i < priv->l2_bucket_size; i++) {
entry = priv->r->read_l2_entry_using_hash(key, i, &e);
if (!e.valid || ((entry & 0x0fffffffffffffffULL) == seed)) {
idx = i > 3 ? ((key >> 14) & 0xffff) | i >> 1
: ((key << 2) | i) & 0xffff;
break;
}
}
if (idx < 0) {
pr_err("%s: No more L2 forwarding entries available\n", __func__);
return -1;
}
// Found an existing (e->valid is true) or empty entry, make it a nexthop entry
nh->l2_id = idx;
if (e.valid) {
nh->port = e.port;
nh->vid = e.vid; // Save VID
nh->rvid = e.rvid;
nh->dev_id = e.stack_dev;
// If the entry is already a valid next hop entry, don't change it
if (e.next_hop)
return 0;
} else {
e.valid = true;
e.is_static = true;
e.rvid = nh->rvid;
e.is_ip_mc = false;
e.is_ipv6_mc = false;
e.block_da = false;
e.block_sa = false;
e.suspended = false;
e.age = 0; // With port-ignore
e.port = priv->port_ignore;
u64_to_ether_addr(nh->mac, &e.mac[0]);
}
e.next_hop = true;
e.nh_route_id = nh->id; // NH route ID takes place of VID
e.nh_vlan_target = false;
priv->r->write_l2_entry_using_hash(idx >> 2, idx & 0x3, &e);
return 0;
}
/*
* Removes a Layer 2 next hop entry in the forwarding database
* If it was static, the entire entry is removed, otherwise the nexthop bit is cleared
* and we wait until the entry ages out
*/
int rtl83xx_l2_nexthop_rm(struct rtl838x_switch_priv *priv, struct rtl83xx_nexthop *nh)
{
struct rtl838x_l2_entry e;
u32 key = nh->l2_id >> 2;
int i = nh->l2_id & 0x3;
u64 entry = entry = priv->r->read_l2_entry_using_hash(key, i, &e);
pr_debug("%s: id %d, key %d, index %d\n", __func__, nh->l2_id, key, i);
if (!e.valid) {
dev_err(priv->dev, "unknown nexthop, id %x\n", nh->l2_id);
return -1;
}
if (e.is_static)
e.valid = false;
e.next_hop = false;
e.vid = nh->vid; // Restore VID
e.rvid = nh->rvid;
priv->r->write_l2_entry_using_hash(key, i, &e);
return 0;
}
static int rtl83xx_handle_changeupper(struct rtl838x_switch_priv *priv,
struct net_device *ndev,
struct netdev_notifier_changeupper_info *info)
{
struct net_device *upper = info->upper_dev;
int i, j, err;
if (!netif_is_lag_master(upper))
return 0;
mutex_lock(&priv->reg_mutex);
for (i = 0; i < priv->n_lags; i++) {
if ((!priv->lag_devs[i]) || (priv->lag_devs[i] == upper))
break;
}
for (j = 0; j < priv->cpu_port; j++) {
if (priv->ports[j].dp->slave == ndev)
break;
}
if (j >= priv->cpu_port) {
err = -EINVAL;
goto out;
}
if (info->linking) {
if (!priv->lag_devs[i])
priv->lag_devs[i] = upper;
err = rtl83xx_lag_add(priv->ds, i, priv->ports[j].dp->index);
if (err) {
err = -EINVAL;
goto out;
}
} else {
if (!priv->lag_devs[i])
err = -EINVAL;
err = rtl83xx_lag_del(priv->ds, i, priv->ports[j].dp->index);
if (err) {
err = -EINVAL;
goto out;
}
if (!priv->lags_port_members[i])
priv->lag_devs[i] = NULL;
}
out:
mutex_unlock(&priv->reg_mutex);
return 0;
}
/*
* Is the lower network device a DSA slave network device of our RTL930X-switch?
* Unfortunately we cannot just follow dev->dsa_prt as this is only set for the
* DSA master device.
*/
int rtl83xx_port_is_under(const struct net_device * dev, struct rtl838x_switch_priv *priv)
{
int i;
// TODO: On 5.12:
// if(!dsa_slave_dev_check(dev)) {
// netdev_info(dev, "%s: not a DSA device.\n", __func__);
// return -EINVAL;
// }
for (i = 0; i < priv->cpu_port; i++) {
if (!priv->ports[i].dp)
continue;
if (priv->ports[i].dp->slave == dev)
return i;
}
return -EINVAL;
}
static int rtl83xx_netdevice_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
struct rtl838x_switch_priv *priv;
int err;
pr_debug("In: %s, event: %lu\n", __func__, event);
if ((event != NETDEV_CHANGEUPPER) && (event != NETDEV_CHANGELOWERSTATE))
return NOTIFY_DONE;
priv = container_of(this, struct rtl838x_switch_priv, nb);
switch (event) {
case NETDEV_CHANGEUPPER:
err = rtl83xx_handle_changeupper(priv, ndev, ptr);
break;
}
if (err)
return err;
return NOTIFY_DONE;
}
const static struct rhashtable_params route_ht_params = {
.key_len = sizeof(u32),
.key_offset = offsetof(struct rtl83xx_route, gw_ip),
.head_offset = offsetof(struct rtl83xx_route, linkage),
};
/*
* Updates an L3 next hop entry in the ROUTING table
*/
static int rtl83xx_l3_nexthop_update(struct rtl838x_switch_priv *priv, __be32 ip_addr, u64 mac)
{
struct rtl83xx_route *r;
struct rhlist_head *tmp, *list;
rcu_read_lock();
list = rhltable_lookup(&priv->routes, &ip_addr, route_ht_params);
if (!list) {
rcu_read_unlock();
return -ENOENT;
}
rhl_for_each_entry_rcu(r, tmp, list, linkage) {
pr_info("%s: Setting up fwding: ip %pI4, GW mac %016llx\n",
__func__, &ip_addr, mac);
// Reads the ROUTING table entry associated with the route
priv->r->route_read(r->id, r);
pr_info("Route with id %d to %pI4 / %d\n", r->id, &r->dst_ip, r->prefix_len);
r->nh.mac = r->nh.gw = mac;
r->nh.port = priv->port_ignore;
r->nh.id = r->id;
// Do we need to explicitly add a DMAC entry with the route's nh index?
if (priv->r->set_l3_egress_mac)
priv->r->set_l3_egress_mac(r->id, mac);
// Update ROUTING table: map gateway-mac and switch-mac id to route id
rtl83xx_l2_nexthop_add(priv, &r->nh);
r->attr.valid = true;
r->attr.action = ROUTE_ACT_FORWARD;
r->attr.type = 0;
r->attr.hit = false; // Reset route-used indicator
// Add PIE entry with dst_ip and prefix_len
r->pr.dip = r->dst_ip;
r->pr.dip_m = inet_make_mask(r->prefix_len);
if (r->is_host_route) {
int slot = priv->r->find_l3_slot(r, false);
pr_info("%s: Got slot for route: %d\n", __func__, slot);
priv->r->host_route_write(slot, r);
} else {
priv->r->route_write(r->id, r);
r->pr.fwd_sel = true;
r->pr.fwd_data = r->nh.l2_id;
r->pr.fwd_act = PIE_ACT_ROUTE_UC;
}
if (priv->r->set_l3_nexthop)
priv->r->set_l3_nexthop(r->nh.id, r->nh.l2_id, r->nh.if_id);
if (r->pr.id < 0) {
r->pr.packet_cntr = rtl83xx_packet_cntr_alloc(priv);
if (r->pr.packet_cntr >= 0) {
pr_info("Using packet counter %d\n", r->pr.packet_cntr);
r->pr.log_sel = true;
r->pr.log_data = r->pr.packet_cntr;
}
priv->r->pie_rule_add(priv, &r->pr);
} else {
int pkts = priv->r->packet_cntr_read(r->pr.packet_cntr);
pr_info("%s: total packets: %d\n", __func__, pkts);
priv->r->pie_rule_write(priv, r->pr.id, &r->pr);
}
}
rcu_read_unlock();
return 0;
}
static int rtl83xx_port_ipv4_resolve(struct rtl838x_switch_priv *priv,
struct net_device *dev, __be32 ip_addr)
{
struct neighbour *n = neigh_lookup(&arp_tbl, &ip_addr, dev);
int err = 0;
u64 mac;
if (!n) {
n = neigh_create(&arp_tbl, &ip_addr, dev);
if (IS_ERR(n))
return PTR_ERR(n);
}
/* If the neigh is already resolved, then go ahead and
* install the entry, otherwise start the ARP process to
* resolve the neigh.
*/
if (n->nud_state & NUD_VALID) {
mac = ether_addr_to_u64(n->ha);
pr_info("%s: resolved mac: %016llx\n", __func__, mac);
rtl83xx_l3_nexthop_update(priv, ip_addr, mac);
} else {
pr_info("%s: need to wait\n", __func__);
neigh_event_send(n, NULL);
}
neigh_release(n);
return err;
}
struct rtl83xx_walk_data {
struct rtl838x_switch_priv *priv;
int port;
};
static int rtl83xx_port_lower_walk(struct net_device *lower, struct netdev_nested_priv *_priv)
{
struct rtl83xx_walk_data *data = (struct rtl83xx_walk_data *)_priv->data;
struct rtl838x_switch_priv *priv = data->priv;
int ret = 0;
int index;
index = rtl83xx_port_is_under(lower, priv);
data->port = index;
if (index >= 0) {
pr_debug("Found DSA-port, index %d\n", index);
ret = 1;
}
return ret;
}
int rtl83xx_port_dev_lower_find(struct net_device *dev, struct rtl838x_switch_priv *priv)
{
struct rtl83xx_walk_data data;
struct netdev_nested_priv _priv;
data.priv = priv;
data.port = 0;
_priv.data = (void *)&data;
netdev_walk_all_lower_dev(dev, rtl83xx_port_lower_walk, &_priv);
return data.port;
}
static struct rtl83xx_route *rtl83xx_route_alloc(struct rtl838x_switch_priv *priv, u32 ip)
{
struct rtl83xx_route *r;
int idx = 0, err;
mutex_lock(&priv->reg_mutex);
idx = find_first_zero_bit(priv->route_use_bm, MAX_ROUTES);
pr_debug("%s id: %d, ip %pI4\n", __func__, idx, &ip);
r = kzalloc(sizeof(*r), GFP_KERNEL);
if (!r) {
mutex_unlock(&priv->reg_mutex);
return r;
}
r->id = idx;
r->gw_ip = ip;
r->pr.id = -1; // We still need to allocate a rule in HW
r->is_host_route = false;
err = rhltable_insert(&priv->routes, &r->linkage, route_ht_params);
if (err) {
pr_err("Could not insert new rule\n");
mutex_unlock(&priv->reg_mutex);
goto out_free;
}
set_bit(idx, priv->route_use_bm);
mutex_unlock(&priv->reg_mutex);
return r;
out_free:
kfree(r);
return NULL;
}
static struct rtl83xx_route *rtl83xx_host_route_alloc(struct rtl838x_switch_priv *priv, u32 ip)
{
struct rtl83xx_route *r;
int idx = 0, err;
mutex_lock(&priv->reg_mutex);
idx = find_first_zero_bit(priv->host_route_use_bm, MAX_HOST_ROUTES);
pr_debug("%s id: %d, ip %pI4\n", __func__, idx, &ip);
r = kzalloc(sizeof(*r), GFP_KERNEL);
if (!r) {
mutex_unlock(&priv->reg_mutex);
return r;
}
/* We require a unique route ID irrespective of whether it is a prefix or host
* route (on RTL93xx) as we use this ID to associate a DMAC and next-hop entry */
r->id = idx + MAX_ROUTES;
r->gw_ip = ip;
r->pr.id = -1; // We still need to allocate a rule in HW
r->is_host_route = true;
err = rhltable_insert(&priv->routes, &r->linkage, route_ht_params);
if (err) {
pr_err("Could not insert new rule\n");
mutex_unlock(&priv->reg_mutex);
goto out_free;
}
set_bit(idx, priv->host_route_use_bm);
mutex_unlock(&priv->reg_mutex);
return r;
out_free:
kfree(r);
return NULL;
}
static void rtl83xx_route_rm(struct rtl838x_switch_priv *priv, struct rtl83xx_route *r)
{
int id;
if (rhltable_remove(&priv->routes, &r->linkage, route_ht_params))
dev_warn(priv->dev, "Could not remove route\n");
if (r->is_host_route) {
id = priv->r->find_l3_slot(r, false);
pr_debug("%s: Got id for host route: %d\n", __func__, id);
r->attr.valid = false;
priv->r->host_route_write(id, r);
clear_bit(r->id - MAX_ROUTES, priv->host_route_use_bm);
} else {
// If there is a HW representation of the route, delete it
if (priv->r->route_lookup_hw) {
id = priv->r->route_lookup_hw(r);
pr_info("%s: Got id for prefix route: %d\n", __func__, id);
r->attr.valid = false;
priv->r->route_write(id, r);
}
clear_bit(r->id, priv->route_use_bm);
}
kfree(r);
}
static int rtl83xx_fib4_del(struct rtl838x_switch_priv *priv,
struct fib_entry_notifier_info *info)
{
struct fib_nh *nh = fib_info_nh(info->fi, 0);
struct rtl83xx_route *r;
struct rhlist_head *tmp, *list;
pr_debug("In %s, ip %pI4, len %d\n", __func__, &info->dst, info->dst_len);
rcu_read_lock();
list = rhltable_lookup(&priv->routes, &nh->fib_nh_gw4, route_ht_params);
if (!list) {
rcu_read_unlock();
pr_err("%s: no such gateway: %pI4\n", __func__, &nh->fib_nh_gw4);
return -ENOENT;
}
rhl_for_each_entry_rcu(r, tmp, list, linkage) {
if (r->dst_ip == info->dst && r->prefix_len == info->dst_len) {
pr_info("%s: found a route with id %d, nh-id %d\n",
__func__, r->id, r->nh.id);
break;
}
}
rcu_read_unlock();
rtl83xx_l2_nexthop_rm(priv, &r->nh);
pr_debug("%s: Releasing packet counter %d\n", __func__, r->pr.packet_cntr);
set_bit(r->pr.packet_cntr, priv->packet_cntr_use_bm);
priv->r->pie_rule_rm(priv, &r->pr);
rtl83xx_route_rm(priv, r);
nh->fib_nh_flags &= ~RTNH_F_OFFLOAD;
return 0;
}
/*
* On the RTL93xx, an L3 termination endpoint MAC address on which the router waits
* for packets to be routed needs to be allocated.
*/
static int rtl83xx_alloc_router_mac(struct rtl838x_switch_priv *priv, u64 mac)
{
int i, free_mac = -1;
struct rtl93xx_rt_mac m;
mutex_lock(&priv->reg_mutex);
for (i = 0; i < MAX_ROUTER_MACS; i++) {
priv->r->get_l3_router_mac(i, &m);
if (free_mac < 0 && !m.valid) {
free_mac = i;
continue;
}
if (m.valid && m.mac == mac) {
free_mac = i;
break;
}
}
if (free_mac < 0) {
pr_err("No free router MACs, cannot offload\n");
mutex_unlock(&priv->reg_mutex);
return -1;
}
m.valid = true;
m.mac = mac;
m.p_type = 0; // An individual port, not a trunk port
m.p_id = 0x3f; // Listen on any port
m.p_id_mask = 0;
m.vid = 0; // Listen on any VLAN...
m.vid_mask = 0; // ... so mask needs to be 0
m.mac_mask = 0xffffffffffffULL; // We want an exact match of the interface MAC
m.action = L3_FORWARD; // Route the packet
priv->r->set_l3_router_mac(free_mac, &m);
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int rtl83xx_alloc_egress_intf(struct rtl838x_switch_priv *priv, u64 mac, int vlan)
{
int i, free_mac = -1;
struct rtl838x_l3_intf intf;
u64 m;
mutex_lock(&priv->reg_mutex);
for (i = 0; i < MAX_SMACS; i++) {
m = priv->r->get_l3_egress_mac(L3_EGRESS_DMACS + i);
if (free_mac < 0 && !m) {
free_mac = i;
continue;
}
if (m == mac) {
mutex_unlock(&priv->reg_mutex);
return i;
}
}
if (free_mac < 0) {
pr_err("No free egress interface, cannot offload\n");
return -1;
}
// Set up default egress interface 1
intf.vid = vlan;
intf.smac_idx = free_mac;
intf.ip4_mtu_id = 1;
intf.ip6_mtu_id = 1;
intf.ttl_scope = 1; // TTL
intf.hl_scope = 1; // Hop Limit
intf.ip4_icmp_redirect = intf.ip6_icmp_redirect = 2; // FORWARD
intf.ip4_pbr_icmp_redirect = intf.ip6_pbr_icmp_redirect = 2; // FORWARD;
priv->r->set_l3_egress_intf(free_mac, &intf);
priv->r->set_l3_egress_mac(L3_EGRESS_DMACS + free_mac, mac);
mutex_unlock(&priv->reg_mutex);
return free_mac;
}
static int rtl83xx_fib4_add(struct rtl838x_switch_priv *priv,
struct fib_entry_notifier_info *info)
{
struct fib_nh *nh = fib_info_nh(info->fi, 0);
struct net_device *dev = fib_info_nh(info->fi, 0)->fib_nh_dev;
int port;
struct rtl83xx_route *r;
bool to_localhost;
int vlan = is_vlan_dev(dev) ? vlan_dev_vlan_id(dev) : 0;
pr_debug("In %s, ip %pI4, len %d\n", __func__, &info->dst, info->dst_len);
if (!info->dst) {
pr_info("Not offloading default route for now\n");
return 0;
}
pr_debug("GW: %pI4, interface name %s, mac %016llx, vlan %d\n", &nh->fib_nh_gw4, dev->name,
ether_addr_to_u64(dev->dev_addr), vlan
);
port = rtl83xx_port_dev_lower_find(dev, priv);
if (port < 0)
return -1;
// For now we only work with routes that have a gateway and are not ourself
// if ((!nh->fib_nh_gw4) && (info->dst_len != 32))
// return 0;
if ((info->dst & 0xff) == 0xff)
return 0;
// Do not offload routes to 192.168.100.x
if ((info->dst & 0xffffff00) == 0xc0a86400)
return 0;
// Do not offload routes to 127.x.x.x
if ((info->dst & 0xff000000) == 0x7f000000)
return 0;
// Allocate route or host-route (entry if hardware supports this)
if (info->dst_len == 32 && priv->r->host_route_write)
r = rtl83xx_host_route_alloc(priv, nh->fib_nh_gw4);
else
r = rtl83xx_route_alloc(priv, nh->fib_nh_gw4);
if (!r) {
pr_err("%s: No more free route entries\n", __func__);
return -1;
}
r->dst_ip = info->dst;
r->prefix_len = info->dst_len;
r->nh.rvid = vlan;
to_localhost = !nh->fib_nh_gw4;
if (priv->r->set_l3_router_mac) {
u64 mac = ether_addr_to_u64(dev->dev_addr);
pr_debug("Local route and router mac %016llx\n", mac);
if (rtl83xx_alloc_router_mac(priv, mac))
goto out_free_rt;
// vid = 0: Do not care about VID
r->nh.if_id = rtl83xx_alloc_egress_intf(priv, mac, vlan);
if (r->nh.if_id < 0)
goto out_free_rmac;
if (to_localhost) {
int slot;
r->nh.mac = mac;
r->nh.port = priv->port_ignore;
r->attr.valid = true;
r->attr.action = ROUTE_ACT_TRAP2CPU;
r->attr.type = 0;
slot = priv->r->find_l3_slot(r, false);
pr_debug("%s: Got slot for route: %d\n", __func__, slot);
priv->r->host_route_write(slot, r);
}
}
// We need to resolve the mac address of the GW
if (!to_localhost)
rtl83xx_port_ipv4_resolve(priv, dev, nh->fib_nh_gw4);
nh->fib_nh_flags |= RTNH_F_OFFLOAD;
return 0;
out_free_rmac:
out_free_rt:
return 0;
}
static int rtl83xx_fib6_add(struct rtl838x_switch_priv *priv,
struct fib6_entry_notifier_info *info)
{
pr_debug("In %s\n", __func__);
// nh->fib_nh_flags |= RTNH_F_OFFLOAD;
return 0;
}
struct net_event_work {
struct work_struct work;
struct rtl838x_switch_priv *priv;
u64 mac;
u32 gw_addr;
};
static void rtl83xx_net_event_work_do(struct work_struct *work)
{
struct net_event_work *net_work =
container_of(work, struct net_event_work, work);
struct rtl838x_switch_priv *priv = net_work->priv;
rtl83xx_l3_nexthop_update(priv, net_work->gw_addr, net_work->mac);
}
static int rtl83xx_netevent_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct rtl838x_switch_priv *priv;
struct net_device *dev;
struct neighbour *n = ptr;
int err, port;
struct net_event_work *net_work;
priv = container_of(this, struct rtl838x_switch_priv, ne_nb);
net_work = kzalloc(sizeof(*net_work), GFP_ATOMIC);
if (!net_work)
return NOTIFY_BAD;
INIT_WORK(&net_work->work, rtl83xx_net_event_work_do);
net_work->priv = priv;
switch (event) {
case NETEVENT_NEIGH_UPDATE:
if (n->tbl != &arp_tbl)
return NOTIFY_DONE;
dev = n->dev;
port = rtl83xx_port_dev_lower_find(dev, priv);
if (port < 0 || !(n->nud_state & NUD_VALID)) {
pr_debug("%s: Neigbour invalid, not updating\n", __func__);
kfree(net_work);
return NOTIFY_DONE;
}
net_work->mac = ether_addr_to_u64(n->ha);
net_work->gw_addr = *(__be32 *) n->primary_key;
pr_debug("%s: updating neighbour on port %d, mac %016llx\n",
__func__, port, net_work->mac);
schedule_work(&net_work->work);
if (err)
netdev_warn(dev, "failed to handle neigh update (err %d)\n", err);
break;
}
return NOTIFY_DONE;
}
struct rtl83xx_fib_event_work {
struct work_struct work;
union {
struct fib_entry_notifier_info fen_info;
struct fib6_entry_notifier_info fen6_info;
struct fib_rule_notifier_info fr_info;
};
struct rtl838x_switch_priv *priv;
bool is_fib6;
unsigned long event;
};
static void rtl83xx_fib_event_work_do(struct work_struct *work)
{
struct rtl83xx_fib_event_work *fib_work =
container_of(work, struct rtl83xx_fib_event_work, work);
struct rtl838x_switch_priv *priv = fib_work->priv;
struct fib_rule *rule;
int err;
/* Protect internal structures from changes */
rtnl_lock();
pr_debug("%s: doing work, event %ld\n", __func__, fib_work->event);
switch (fib_work->event) {
case FIB_EVENT_ENTRY_ADD:
case FIB_EVENT_ENTRY_REPLACE:
case FIB_EVENT_ENTRY_APPEND:
if (fib_work->is_fib6) {
err = rtl83xx_fib6_add(priv, &fib_work->fen6_info);
} else {
err = rtl83xx_fib4_add(priv, &fib_work->fen_info);
fib_info_put(fib_work->fen_info.fi);
}
if (err)
pr_err("%s: FIB4 failed\n", __func__);
break;
case FIB_EVENT_ENTRY_DEL:
rtl83xx_fib4_del(priv, &fib_work->fen_info);
fib_info_put(fib_work->fen_info.fi);
break;
case FIB_EVENT_RULE_ADD:
case FIB_EVENT_RULE_DEL:
rule = fib_work->fr_info.rule;
if (!fib4_rule_default(rule))
pr_err("%s: FIB4 default rule failed\n", __func__);
fib_rule_put(rule);
break;
}
rtnl_unlock();
kfree(fib_work);
}
/* Called with rcu_read_lock() */
static int rtl83xx_fib_event(struct notifier_block *this, unsigned long event, void *ptr)
{
struct fib_notifier_info *info = ptr;
struct rtl838x_switch_priv *priv;
struct rtl83xx_fib_event_work *fib_work;
if ((info->family != AF_INET && info->family != AF_INET6 &&
info->family != RTNL_FAMILY_IPMR &&
info->family != RTNL_FAMILY_IP6MR))
return NOTIFY_DONE;
priv = container_of(this, struct rtl838x_switch_priv, fib_nb);
fib_work = kzalloc(sizeof(*fib_work), GFP_ATOMIC);
if (!fib_work)
return NOTIFY_BAD;
INIT_WORK(&fib_work->work, rtl83xx_fib_event_work_do);
fib_work->priv = priv;
fib_work->event = event;
fib_work->is_fib6 = false;
switch (event) {
case FIB_EVENT_ENTRY_ADD:
case FIB_EVENT_ENTRY_REPLACE:
case FIB_EVENT_ENTRY_APPEND:
case FIB_EVENT_ENTRY_DEL:
pr_debug("%s: FIB_ENTRY ADD/DELL, event %ld\n", __func__, event);
if (info->family == AF_INET) {
struct fib_entry_notifier_info *fen_info = ptr;
if (fen_info->fi->fib_nh_is_v6) {
NL_SET_ERR_MSG_MOD(info->extack,
"IPv6 gateway with IPv4 route is not supported");
kfree(fib_work);
return notifier_from_errno(-EINVAL);
}
memcpy(&fib_work->fen_info, ptr, sizeof(fib_work->fen_info));
/* Take referece on fib_info to prevent it from being
* freed while work is queued. Release it afterwards.
*/
fib_info_hold(fib_work->fen_info.fi);
} else if (info->family == AF_INET6) {
struct fib6_entry_notifier_info *fen6_info = ptr;
pr_warn("%s: FIB_RULE ADD/DELL for IPv6 not supported\n", __func__);
kfree(fib_work);
return NOTIFY_DONE;
}
break;
case FIB_EVENT_RULE_ADD:
case FIB_EVENT_RULE_DEL:
pr_debug("%s: FIB_RULE ADD/DELL, event: %ld\n", __func__, event);
memcpy(&fib_work->fr_info, ptr, sizeof(fib_work->fr_info));
fib_rule_get(fib_work->fr_info.rule);
break;
}
schedule_work(&fib_work->work);
return NOTIFY_DONE;
}
static int __init rtl83xx_sw_probe(struct platform_device *pdev)
{
int err = 0, i;
struct rtl838x_switch_priv *priv;
struct device *dev = &pdev->dev;
u64 bpdu_mask;
pr_debug("Probing RTL838X switch device\n");
if (!pdev->dev.of_node) {
dev_err(dev, "No DT found\n");
return -EINVAL;
}
// Initialize access to RTL switch tables
rtl_table_init();
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
if (!priv->ds)
return -ENOMEM;
priv->ds->dev = dev;
priv->ds->priv = priv;
priv->ds->ops = &rtl83xx_switch_ops;
priv->dev = dev;
mutex_init(&priv->reg_mutex);
priv->family_id = soc_info.family;
priv->id = soc_info.id;
switch(soc_info.family) {
case RTL8380_FAMILY_ID:
priv->ds->ops = &rtl83xx_switch_ops;
priv->cpu_port = RTL838X_CPU_PORT;
priv->port_mask = 0x1f;
priv->port_width = 1;
priv->irq_mask = 0x0FFFFFFF;
priv->r = &rtl838x_reg;
priv->ds->num_ports = 29;
priv->fib_entries = 8192;
rtl8380_get_version(priv);
priv->n_lags = 8;
priv->l2_bucket_size = 4;
priv->n_pie_blocks = 12;
priv->port_ignore = 0x1f;
priv->n_counters = 128;
break;
case RTL8390_FAMILY_ID:
priv->ds->ops = &rtl83xx_switch_ops;
priv->cpu_port = RTL839X_CPU_PORT;
priv->port_mask = 0x3f;
priv->port_width = 2;
priv->irq_mask = 0xFFFFFFFFFFFFFULL;
priv->r = &rtl839x_reg;
priv->ds->num_ports = 53;
priv->fib_entries = 16384;
rtl8390_get_version(priv);
priv->n_lags = 16;
priv->l2_bucket_size = 4;
priv->n_pie_blocks = 18;
priv->port_ignore = 0x3f;
priv->n_counters = 1024;
break;
case RTL9300_FAMILY_ID:
priv->ds->ops = &rtl930x_switch_ops;
priv->cpu_port = RTL930X_CPU_PORT;
priv->port_mask = 0x1f;
priv->port_width = 1;
priv->irq_mask = 0x0FFFFFFF;
priv->r = &rtl930x_reg;
priv->ds->num_ports = 29;
priv->fib_entries = 16384;
priv->version = RTL8390_VERSION_A;
priv->n_lags = 16;
sw_w32(1, RTL930X_ST_CTRL);
priv->l2_bucket_size = 8;
priv->n_pie_blocks = 16;
priv->port_ignore = 0x3f;
priv->n_counters = 2048;
break;
case RTL9310_FAMILY_ID:
priv->ds->ops = &rtl930x_switch_ops;
priv->cpu_port = RTL931X_CPU_PORT;
priv->port_mask = 0x3f;
priv->port_width = 2;
priv->irq_mask = 0xFFFFFFFFFFFFFULL;
priv->r = &rtl931x_reg;
priv->ds->num_ports = 57;
priv->fib_entries = 16384;
priv->version = RTL8390_VERSION_A;
priv->n_lags = 16;
priv->l2_bucket_size = 8;
break;
}
pr_debug("Chip version %c\n", priv->version);
err = rtl83xx_mdio_probe(priv);
if (err) {
/* Probing fails the 1st time because of missing ethernet driver
* initialization. Use this to disable traffic in case the bootloader left if on
*/
return err;
}
err = dsa_register_switch(priv->ds);
if (err) {
dev_err(dev, "Error registering switch: %d\n", err);
return err;
}
/*
* dsa_to_port returns dsa_port from the port list in
* dsa_switch_tree, the tree is built when the switch
* is registered by dsa_register_switch
*/
for (i = 0; i <= priv->cpu_port; i++)
priv->ports[i].dp = dsa_to_port(priv->ds, i);
/* Enable link and media change interrupts. Are the SERDES masks needed? */
sw_w32_mask(0, 3, priv->r->isr_glb_src);
priv->r->set_port_reg_le(priv->irq_mask, priv->r->isr_port_link_sts_chg);
priv->r->set_port_reg_le(priv->irq_mask, priv->r->imr_port_link_sts_chg);
priv->link_state_irq = platform_get_irq(pdev, 0);
pr_info("LINK state irq: %d\n", priv->link_state_irq);
switch (priv->family_id) {
case RTL8380_FAMILY_ID:
err = request_irq(priv->link_state_irq, rtl838x_switch_irq,
IRQF_SHARED, "rtl838x-link-state", priv->ds);
break;
case RTL8390_FAMILY_ID:
err = request_irq(priv->link_state_irq, rtl839x_switch_irq,
IRQF_SHARED, "rtl839x-link-state", priv->ds);
break;
case RTL9300_FAMILY_ID:
err = request_irq(priv->link_state_irq, rtl930x_switch_irq,
IRQF_SHARED, "rtl930x-link-state", priv->ds);
break;
case RTL9310_FAMILY_ID:
err = request_irq(priv->link_state_irq, rtl931x_switch_irq,
IRQF_SHARED, "rtl931x-link-state", priv->ds);
break;
}
if (err) {
dev_err(dev, "Error setting up switch interrupt.\n");
/* Need to free allocated switch here */
}
/* Enable interrupts for switch, on RTL931x, the IRQ is always on globally */
if (soc_info.family != RTL9310_FAMILY_ID)
sw_w32(0x1, priv->r->imr_glb);
rtl83xx_get_l2aging(priv);
rtl83xx_setup_qos(priv);
priv->r->l3_setup(priv);
/* Clear all destination ports for mirror groups */
for (i = 0; i < 4; i++)
priv->mirror_group_ports[i] = -1;
/*
* Register netdevice event callback to catch changes in link aggregation groups
*/
priv->nb.notifier_call = rtl83xx_netdevice_event;
if (register_netdevice_notifier(&priv->nb)) {
priv->nb.notifier_call = NULL;
dev_err(dev, "Failed to register LAG netdev notifier\n");
goto err_register_nb;
}
// Initialize hash table for L3 routing
rhltable_init(&priv->routes, &route_ht_params);
/*
* Register netevent notifier callback to catch notifications about neighboring
* changes to update nexthop entries for L3 routing.
*/
priv->ne_nb.notifier_call = rtl83xx_netevent_event;
if (register_netevent_notifier(&priv->ne_nb)) {
priv->ne_nb.notifier_call = NULL;
dev_err(dev, "Failed to register netevent notifier\n");
goto err_register_ne_nb;
}
priv->fib_nb.notifier_call = rtl83xx_fib_event;
/*
* Register Forwarding Information Base notifier to offload routes where
* where possible
* Only FIBs pointing to our own netdevs are programmed into
* the device, so no need to pass a callback.
*/
err = register_fib_notifier(&init_net, &priv->fib_nb, NULL, NULL);
if (err)
goto err_register_fib_nb;
// TODO: put this into l2_setup()
// Flood BPDUs to all ports including cpu-port
if (soc_info.family != RTL9300_FAMILY_ID) {
bpdu_mask = soc_info.family == RTL8380_FAMILY_ID ? 0x1FFFFFFF : 0x1FFFFFFFFFFFFF;
priv->r->set_port_reg_be(bpdu_mask, priv->r->rma_bpdu_fld_pmask);
// TRAP 802.1X frames (EAPOL) to the CPU-Port, bypass STP and VLANs
sw_w32(7, priv->r->spcl_trap_eapol_ctrl);
rtl838x_dbgfs_init(priv);
} else {
rtl930x_dbgfs_init(priv);
}
return 0;
err_register_fib_nb:
unregister_netevent_notifier(&priv->ne_nb);
err_register_ne_nb:
unregister_netdevice_notifier(&priv->nb);
err_register_nb:
return err;
}
static int rtl83xx_sw_remove(struct platform_device *pdev)
{
// TODO:
pr_debug("Removing platform driver for rtl83xx-sw\n");
return 0;
}
static const struct of_device_id rtl83xx_switch_of_ids[] = {
{ .compatible = "realtek,rtl83xx-switch"},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rtl83xx_switch_of_ids);
static struct platform_driver rtl83xx_switch_driver = {
.probe = rtl83xx_sw_probe,
.remove = rtl83xx_sw_remove,
.driver = {
.name = "rtl83xx-switch",
.pm = NULL,
.of_match_table = rtl83xx_switch_of_ids,
},
};
module_platform_driver(rtl83xx_switch_driver);
MODULE_AUTHOR("B. Koblitz");
MODULE_DESCRIPTION("RTL83XX SoC Switch Driver");
MODULE_LICENSE("GPL");