difos/target/linux/bmips/files/drivers/net/ethernet/broadcom/bcm6368-enetsw.c
Ansuel Smith 91a52f22a1 treewide: backport support for nvmem on non platform devices
In the current state, nvmem cells are only detected on platform device.
To quickly fix the problem, we register the affected problematic driver
with the of_platform but that is more an hack than a real solution.
Backport from net-next the required patch so that nvmem can work also
with non-platform devices and rework our current patch.
Drop the mediatek and dsa workaround and rework the ath10k patches.
Rework every driver that use the of_get_mac_address api.

Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
2021-08-05 01:46:26 +02:00

1087 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* BCM6368 Ethernet Switch Controller Driver
*
* Copyright (C) 2021 Álvaro Fernández Rojas <noltari@gmail.com>
* Copyright (C) 2015 Jonas Gorski <jonas.gorski@gmail.com>
* Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/interrupt.h>
#include <linux/of_clk.h>
#include <linux/of_net.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
/* MTU */
#define ENETSW_TAG_SIZE 6
#define ENETSW_MTU_OVERHEAD (VLAN_ETH_HLEN + VLAN_HLEN + \
ENETSW_TAG_SIZE)
/* default number of descriptor */
#define ENETSW_DEF_RX_DESC 64
#define ENETSW_DEF_TX_DESC 32
#define ENETSW_DEF_CPY_BREAK 128
/* maximum burst len for dma (4 bytes unit) */
#define ENETSW_DMA_MAXBURST 8
/* DMA channels */
#define DMA_CHAN_WIDTH 0x10
/* Controller Configuration Register */
#define DMA_CFG_REG 0x0
#define DMA_CFG_EN_SHIFT 0
#define DMA_CFG_EN_MASK (1 << DMA_CFG_EN_SHIFT)
#define DMA_CFG_FLOWCH_MASK(x) (1 << ((x >> 1) + 1))
/* Flow Control Descriptor Low Threshold register */
#define DMA_FLOWCL_REG(x) (0x4 + (x) * 6)
/* Flow Control Descriptor High Threshold register */
#define DMA_FLOWCH_REG(x) (0x8 + (x) * 6)
/* Flow Control Descriptor Buffer Alloca Threshold register */
#define DMA_BUFALLOC_REG(x) (0xc + (x) * 6)
#define DMA_BUFALLOC_FORCE_SHIFT 31
#define DMA_BUFALLOC_FORCE_MASK (1 << DMA_BUFALLOC_FORCE_SHIFT)
/* Channel Configuration register */
#define DMAC_CHANCFG_REG 0x0
#define DMAC_CHANCFG_EN_SHIFT 0
#define DMAC_CHANCFG_EN_MASK (1 << DMAC_CHANCFG_EN_SHIFT)
#define DMAC_CHANCFG_PKTHALT_SHIFT 1
#define DMAC_CHANCFG_PKTHALT_MASK (1 << DMAC_CHANCFG_PKTHALT_SHIFT)
#define DMAC_CHANCFG_BUFHALT_SHIFT 2
#define DMAC_CHANCFG_BUFHALT_MASK (1 << DMAC_CHANCFG_BUFHALT_SHIFT)
#define DMAC_CHANCFG_CHAINING_SHIFT 2
#define DMAC_CHANCFG_CHAINING_MASK (1 << DMAC_CHANCFG_CHAINING_SHIFT)
#define DMAC_CHANCFG_WRAP_EN_SHIFT 3
#define DMAC_CHANCFG_WRAP_EN_MASK (1 << DMAC_CHANCFG_WRAP_EN_SHIFT)
#define DMAC_CHANCFG_FLOWC_EN_SHIFT 4
#define DMAC_CHANCFG_FLOWC_EN_MASK (1 << DMAC_CHANCFG_FLOWC_EN_SHIFT)
/* Interrupt Control/Status register */
#define DMAC_IR_REG 0x4
#define DMAC_IR_BUFDONE_MASK (1 << 0)
#define DMAC_IR_PKTDONE_MASK (1 << 1)
#define DMAC_IR_NOTOWNER_MASK (1 << 2)
/* Interrupt Mask register */
#define DMAC_IRMASK_REG 0x8
/* Maximum Burst Length */
#define DMAC_MAXBURST_REG 0xc
/* Ring Start Address register */
#define DMAS_RSTART_REG 0x0
/* State Ram Word 2 */
#define DMAS_SRAM2_REG 0x4
/* State Ram Word 3 */
#define DMAS_SRAM3_REG 0x8
/* State Ram Word 4 */
#define DMAS_SRAM4_REG 0xc
struct bcm6368_enetsw_desc {
u32 len_stat;
u32 address;
};
/* control */
#define DMADESC_LENGTH_SHIFT 16
#define DMADESC_LENGTH_MASK (0xfff << DMADESC_LENGTH_SHIFT)
#define DMADESC_OWNER_MASK (1 << 15)
#define DMADESC_EOP_MASK (1 << 14)
#define DMADESC_SOP_MASK (1 << 13)
#define DMADESC_ESOP_MASK (DMADESC_EOP_MASK | DMADESC_SOP_MASK)
#define DMADESC_WRAP_MASK (1 << 12)
#define DMADESC_USB_NOZERO_MASK (1 << 1)
#define DMADESC_USB_ZERO_MASK (1 << 0)
/* status */
#define DMADESC_UNDER_MASK (1 << 9)
#define DMADESC_APPEND_CRC (1 << 8)
#define DMADESC_OVSIZE_MASK (1 << 4)
#define DMADESC_RXER_MASK (1 << 2)
#define DMADESC_CRC_MASK (1 << 1)
#define DMADESC_OV_MASK (1 << 0)
#define DMADESC_ERR_MASK (DMADESC_UNDER_MASK | \
DMADESC_OVSIZE_MASK | \
DMADESC_RXER_MASK | \
DMADESC_CRC_MASK | \
DMADESC_OV_MASK)
struct bcm6368_enetsw {
void __iomem *dma_base;
void __iomem *dma_chan;
void __iomem *dma_sram;
struct device **pm;
struct device_link **link_pm;
int num_pms;
struct clk **clock;
unsigned int num_clocks;
struct reset_control **reset;
unsigned int num_resets;
int copybreak;
int irq_rx;
int irq_tx;
/* hw view of rx & tx dma ring */
dma_addr_t rx_desc_dma;
dma_addr_t tx_desc_dma;
/* allocated size (in bytes) for rx & tx dma ring */
unsigned int rx_desc_alloc_size;
unsigned int tx_desc_alloc_size;
struct napi_struct napi;
/* dma channel id for rx */
int rx_chan;
/* number of dma desc in rx ring */
int rx_ring_size;
/* cpu view of rx dma ring */
struct bcm6368_enetsw_desc *rx_desc_cpu;
/* current number of armed descriptor given to hardware for rx */
int rx_desc_count;
/* next rx descriptor to fetch from hardware */
int rx_curr_desc;
/* next dirty rx descriptor to refill */
int rx_dirty_desc;
/* size of allocated rx skbs */
unsigned int rx_skb_size;
/* list of skb given to hw for rx */
struct sk_buff **rx_skb;
/* used when rx skb allocation failed, so we defer rx queue
* refill */
struct timer_list rx_timeout;
/* lock rx_timeout against rx normal operation */
spinlock_t rx_lock;
/* dma channel id for tx */
int tx_chan;
/* number of dma desc in tx ring */
int tx_ring_size;
/* maximum dma burst size */
int dma_maxburst;
/* cpu view of rx dma ring */
struct bcm6368_enetsw_desc *tx_desc_cpu;
/* number of available descriptor for tx */
int tx_desc_count;
/* next tx descriptor avaiable */
int tx_curr_desc;
/* next dirty tx descriptor to reclaim */
int tx_dirty_desc;
/* list of skb given to hw for tx */
struct sk_buff **tx_skb;
/* lock used by tx reclaim and xmit */
spinlock_t tx_lock;
/* network device reference */
struct net_device *net_dev;
/* platform device reference */
struct platform_device *pdev;
/* dma channel enable mask */
u32 dma_chan_en_mask;
/* dma channel interrupt mask */
u32 dma_chan_int_mask;
/* dma channel width */
unsigned int dma_chan_width;
};
static inline void dma_writel(struct bcm6368_enetsw *priv, u32 val, u32 off)
{
__raw_writel(val, priv->dma_base + off);
}
static inline u32 dma_readl(struct bcm6368_enetsw *priv, u32 off, int chan)
{
return __raw_readl(priv->dma_chan + off + chan * priv->dma_chan_width);
}
static inline void dmac_writel(struct bcm6368_enetsw *priv, u32 val,
u32 off, int chan)
{
__raw_writel(val, priv->dma_chan + off + chan * priv->dma_chan_width);
}
static inline void dmas_writel(struct bcm6368_enetsw *priv, u32 val,
u32 off, int chan)
{
__raw_writel(val, priv->dma_sram + off + chan * priv->dma_chan_width);
}
/*
* refill rx queue
*/
static int bcm6368_enetsw_refill_rx(struct net_device *dev)
{
struct bcm6368_enetsw *priv = netdev_priv(dev);
while (priv->rx_desc_count < priv->rx_ring_size) {
struct bcm6368_enetsw_desc *desc;
struct sk_buff *skb;
dma_addr_t p;
int desc_idx;
u32 len_stat;
desc_idx = priv->rx_dirty_desc;
desc = &priv->rx_desc_cpu[desc_idx];
if (!priv->rx_skb[desc_idx]) {
skb = netdev_alloc_skb(dev, priv->rx_skb_size);
if (!skb)
break;
priv->rx_skb[desc_idx] = skb;
p = dma_map_single(&priv->pdev->dev, skb->data,
priv->rx_skb_size,
DMA_FROM_DEVICE);
desc->address = p;
}
len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
len_stat |= DMADESC_OWNER_MASK;
if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
len_stat |= DMADESC_WRAP_MASK;
priv->rx_dirty_desc = 0;
} else {
priv->rx_dirty_desc++;
}
wmb();
desc->len_stat = len_stat;
priv->rx_desc_count++;
/* tell dma engine we allocated one buffer */
dma_writel(priv, 1, DMA_BUFALLOC_REG(priv->rx_chan));
}
/* If rx ring is still empty, set a timer to try allocating
* again at a later time. */
if (priv->rx_desc_count == 0 && netif_running(dev)) {
dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
priv->rx_timeout.expires = jiffies + HZ;
add_timer(&priv->rx_timeout);
}
return 0;
}
/*
* timer callback to defer refill rx queue in case we're OOM
*/
static void bcm6368_enetsw_refill_rx_timer(struct timer_list *t)
{
struct bcm6368_enetsw *priv = from_timer(priv, t, rx_timeout);
struct net_device *dev = priv->net_dev;
spin_lock(&priv->rx_lock);
bcm6368_enetsw_refill_rx(dev);
spin_unlock(&priv->rx_lock);
}
/*
* extract packet from rx queue
*/
static int bcm6368_enetsw_receive_queue(struct net_device *dev, int budget)
{
struct bcm6368_enetsw *priv = netdev_priv(dev);
struct device *kdev = &priv->pdev->dev;
int processed = 0;
/* don't scan ring further than number of refilled
* descriptor */
if (budget > priv->rx_desc_count)
budget = priv->rx_desc_count;
do {
struct bcm6368_enetsw_desc *desc;
struct sk_buff *skb;
int desc_idx;
u32 len_stat;
unsigned int len;
desc_idx = priv->rx_curr_desc;
desc = &priv->rx_desc_cpu[desc_idx];
/* make sure we actually read the descriptor status at
* each loop */
rmb();
len_stat = desc->len_stat;
/* break if dma ownership belongs to hw */
if (len_stat & DMADESC_OWNER_MASK)
break;
processed++;
priv->rx_curr_desc++;
if (priv->rx_curr_desc == priv->rx_ring_size)
priv->rx_curr_desc = 0;
priv->rx_desc_count--;
/* if the packet does not have start of packet _and_
* end of packet flag set, then just recycle it */
if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
dev->stats.rx_dropped++;
continue;
}
/* valid packet */
skb = priv->rx_skb[desc_idx];
len = (len_stat & DMADESC_LENGTH_MASK)
>> DMADESC_LENGTH_SHIFT;
/* don't include FCS */
len -= 4;
if (len < priv->copybreak) {
struct sk_buff *nskb;
nskb = napi_alloc_skb(&priv->napi, len);
if (!nskb) {
/* forget packet, just rearm desc */
dev->stats.rx_dropped++;
continue;
}
dma_sync_single_for_cpu(kdev, desc->address,
len, DMA_FROM_DEVICE);
memcpy(nskb->data, skb->data, len);
dma_sync_single_for_device(kdev, desc->address,
len, DMA_FROM_DEVICE);
skb = nskb;
} else {
dma_unmap_single(&priv->pdev->dev, desc->address,
priv->rx_skb_size, DMA_FROM_DEVICE);
priv->rx_skb[desc_idx] = NULL;
}
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, dev);
dev->stats.rx_packets++;
dev->stats.rx_bytes += len;
netif_receive_skb(skb);
} while (--budget > 0);
if (processed || !priv->rx_desc_count) {
bcm6368_enetsw_refill_rx(dev);
/* kick rx dma */
dmac_writel(priv, priv->dma_chan_en_mask,
DMAC_CHANCFG_REG, priv->rx_chan);
}
return processed;
}
/*
* try to or force reclaim of transmitted buffers
*/
static int bcm6368_enetsw_tx_reclaim(struct net_device *dev, int force)
{
struct bcm6368_enetsw *priv = netdev_priv(dev);
int released = 0;
while (priv->tx_desc_count < priv->tx_ring_size) {
struct bcm6368_enetsw_desc *desc;
struct sk_buff *skb;
/* We run in a bh and fight against start_xmit, which
* is called with bh disabled */
spin_lock(&priv->tx_lock);
desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
spin_unlock(&priv->tx_lock);
break;
}
/* ensure other field of the descriptor were not read
* before we checked ownership */
rmb();
skb = priv->tx_skb[priv->tx_dirty_desc];
priv->tx_skb[priv->tx_dirty_desc] = NULL;
dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
DMA_TO_DEVICE);
priv->tx_dirty_desc++;
if (priv->tx_dirty_desc == priv->tx_ring_size)
priv->tx_dirty_desc = 0;
priv->tx_desc_count++;
spin_unlock(&priv->tx_lock);
if (desc->len_stat & DMADESC_UNDER_MASK)
dev->stats.tx_errors++;
dev_kfree_skb(skb);
released++;
}
if (netif_queue_stopped(dev) && released)
netif_wake_queue(dev);
return released;
}
/*
* poll func, called by network core
*/
static int bcm6368_enetsw_poll(struct napi_struct *napi, int budget)
{
struct bcm6368_enetsw *priv = container_of(napi, struct bcm6368_enetsw, napi);
struct net_device *dev = priv->net_dev;
int rx_work_done;
/* ack interrupts */
dmac_writel(priv, priv->dma_chan_int_mask,
DMAC_IR_REG, priv->rx_chan);
dmac_writel(priv, priv->dma_chan_int_mask,
DMAC_IR_REG, priv->tx_chan);
/* reclaim sent skb */
bcm6368_enetsw_tx_reclaim(dev, 0);
spin_lock(&priv->rx_lock);
rx_work_done = bcm6368_enetsw_receive_queue(dev, budget);
spin_unlock(&priv->rx_lock);
if (rx_work_done >= budget) {
/* rx queue is not yet empty/clean */
return rx_work_done;
}
/* no more packet in rx/tx queue, remove device from poll
* queue */
napi_complete_done(napi, rx_work_done);
/* restore rx/tx interrupt */
dmac_writel(priv, priv->dma_chan_int_mask,
DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, priv->dma_chan_int_mask,
DMAC_IRMASK_REG, priv->tx_chan);
return rx_work_done;
}
/*
* rx/tx dma interrupt handler
*/
static irqreturn_t bcm6368_enetsw_isr_dma(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct bcm6368_enetsw *priv = netdev_priv(dev);
/* mask rx/tx interrupts */
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
napi_schedule(&priv->napi);
return IRQ_HANDLED;
}
/*
* tx request callback
*/
static netdev_tx_t
bcm6368_enetsw_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct bcm6368_enetsw *priv = netdev_priv(dev);
struct bcm6368_enetsw_desc *desc;
u32 len_stat;
netdev_tx_t ret;
/* lock against tx reclaim */
spin_lock(&priv->tx_lock);
/* make sure the tx hw queue is not full, should not happen
* since we stop queue before it's the case */
if (unlikely(!priv->tx_desc_count)) {
netif_stop_queue(dev);
dev_err(&priv->pdev->dev, "xmit called with no tx desc "
"available?\n");
ret = NETDEV_TX_BUSY;
goto out_unlock;
}
/* pad small packets */
if (skb->len < (ETH_ZLEN + ETH_FCS_LEN)) {
int needed = (ETH_ZLEN + ETH_FCS_LEN) - skb->len;
char *data;
if (unlikely(skb_tailroom(skb) < needed)) {
struct sk_buff *nskb;
nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
if (!nskb) {
ret = NETDEV_TX_BUSY;
goto out_unlock;
}
dev_kfree_skb(skb);
skb = nskb;
}
data = skb_put_zero(skb, needed);
}
/* point to the next available desc */
desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
priv->tx_skb[priv->tx_curr_desc] = skb;
/* fill descriptor */
desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
DMA_TO_DEVICE);
len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
len_stat |= DMADESC_ESOP_MASK | DMADESC_APPEND_CRC |
DMADESC_OWNER_MASK;
priv->tx_curr_desc++;
if (priv->tx_curr_desc == priv->tx_ring_size) {
priv->tx_curr_desc = 0;
len_stat |= DMADESC_WRAP_MASK;
}
priv->tx_desc_count--;
/* dma might be already polling, make sure we update desc
* fields in correct order */
wmb();
desc->len_stat = len_stat;
wmb();
/* kick tx dma */
dmac_writel(priv, priv->dma_chan_en_mask, DMAC_CHANCFG_REG,
priv->tx_chan);
/* stop queue if no more desc available */
if (!priv->tx_desc_count)
netif_stop_queue(dev);
dev->stats.tx_bytes += skb->len;
dev->stats.tx_packets++;
ret = NETDEV_TX_OK;
out_unlock:
spin_unlock(&priv->tx_lock);
return ret;
}
/*
* disable dma in given channel
*/
static void bcm6368_enetsw_disable_dma(struct bcm6368_enetsw *priv, int chan)
{
int limit = 1000;
dmac_writel(priv, 0, DMAC_CHANCFG_REG, chan);
do {
u32 val;
val = dma_readl(priv, DMAC_CHANCFG_REG, chan);
if (!(val & DMAC_CHANCFG_EN_MASK))
break;
udelay(1);
} while (limit--);
}
static int bcm6368_enetsw_open(struct net_device *dev)
{
struct bcm6368_enetsw *priv = netdev_priv(dev);
struct device *kdev = &priv->pdev->dev;
int i, ret;
unsigned int size;
void *p;
u32 val;
/* mask all interrupts and request them */
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
ret = request_irq(priv->irq_rx, bcm6368_enetsw_isr_dma,
0, dev->name, dev);
if (ret)
goto out_freeirq;
if (priv->irq_tx != -1) {
ret = request_irq(priv->irq_tx, bcm6368_enetsw_isr_dma,
0, dev->name, dev);
if (ret)
goto out_freeirq_rx;
}
/* allocate rx dma ring */
size = priv->rx_ring_size * sizeof(struct bcm6368_enetsw_desc);
p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
if (!p) {
dev_err(kdev, "cannot allocate rx ring %u\n", size);
ret = -ENOMEM;
goto out_freeirq_tx;
}
memset(p, 0, size);
priv->rx_desc_alloc_size = size;
priv->rx_desc_cpu = p;
/* allocate tx dma ring */
size = priv->tx_ring_size * sizeof(struct bcm6368_enetsw_desc);
p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
if (!p) {
dev_err(kdev, "cannot allocate tx ring\n");
ret = -ENOMEM;
goto out_free_rx_ring;
}
memset(p, 0, size);
priv->tx_desc_alloc_size = size;
priv->tx_desc_cpu = p;
priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
GFP_KERNEL);
if (!priv->tx_skb) {
dev_err(kdev, "cannot allocate rx skb queue\n");
ret = -ENOMEM;
goto out_free_tx_ring;
}
priv->tx_desc_count = priv->tx_ring_size;
priv->tx_dirty_desc = 0;
priv->tx_curr_desc = 0;
spin_lock_init(&priv->tx_lock);
/* init & fill rx ring with skbs */
priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
GFP_KERNEL);
if (!priv->rx_skb) {
dev_err(kdev, "cannot allocate rx skb queue\n");
ret = -ENOMEM;
goto out_free_tx_skb;
}
priv->rx_desc_count = 0;
priv->rx_dirty_desc = 0;
priv->rx_curr_desc = 0;
/* initialize flow control buffer allocation */
dma_writel(priv, DMA_BUFALLOC_FORCE_MASK | 0,
DMA_BUFALLOC_REG(priv->rx_chan));
if (bcm6368_enetsw_refill_rx(dev)) {
dev_err(kdev, "cannot allocate rx skb queue\n");
ret = -ENOMEM;
goto out;
}
/* write rx & tx ring addresses */
dmas_writel(priv, priv->rx_desc_dma,
DMAS_RSTART_REG, priv->rx_chan);
dmas_writel(priv, priv->tx_desc_dma,
DMAS_RSTART_REG, priv->tx_chan);
/* clear remaining state ram for rx & tx channel */
dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->rx_chan);
dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->tx_chan);
dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->rx_chan);
dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->tx_chan);
dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->rx_chan);
dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->tx_chan);
/* set dma maximum burst len */
dmac_writel(priv, priv->dma_maxburst,
DMAC_MAXBURST_REG, priv->rx_chan);
dmac_writel(priv, priv->dma_maxburst,
DMAC_MAXBURST_REG, priv->tx_chan);
/* set flow control low/high threshold to 1/3 / 2/3 */
val = priv->rx_ring_size / 3;
dma_writel(priv, val, DMA_FLOWCL_REG(priv->rx_chan));
val = (priv->rx_ring_size * 2) / 3;
dma_writel(priv, val, DMA_FLOWCH_REG(priv->rx_chan));
/* all set, enable mac and interrupts, start dma engine and
* kick rx dma channel
*/
wmb();
dma_writel(priv, DMA_CFG_EN_MASK, DMA_CFG_REG);
dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
DMAC_CHANCFG_REG, priv->rx_chan);
/* watch "packet transferred" interrupt in rx and tx */
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IR_REG, priv->rx_chan);
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IR_REG, priv->tx_chan);
/* make sure we enable napi before rx interrupt */
napi_enable(&priv->napi);
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IRMASK_REG, priv->tx_chan);
netif_carrier_on(dev);
netif_start_queue(dev);
return 0;
out:
for (i = 0; i < priv->rx_ring_size; i++) {
struct bcm6368_enetsw_desc *desc;
if (!priv->rx_skb[i])
continue;
desc = &priv->rx_desc_cpu[i];
dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
DMA_FROM_DEVICE);
kfree_skb(priv->rx_skb[i]);
}
kfree(priv->rx_skb);
out_free_tx_skb:
kfree(priv->tx_skb);
out_free_tx_ring:
dma_free_coherent(kdev, priv->tx_desc_alloc_size,
priv->tx_desc_cpu, priv->tx_desc_dma);
out_free_rx_ring:
dma_free_coherent(kdev, priv->rx_desc_alloc_size,
priv->rx_desc_cpu, priv->rx_desc_dma);
out_freeirq_tx:
if (priv->irq_tx != -1)
free_irq(priv->irq_tx, dev);
out_freeirq_rx:
free_irq(priv->irq_rx, dev);
out_freeirq:
return ret;
}
static int bcm6368_enetsw_stop(struct net_device *dev)
{
struct bcm6368_enetsw *priv = netdev_priv(dev);
struct device *kdev = &priv->pdev->dev;
int i;
netif_stop_queue(dev);
napi_disable(&priv->napi);
del_timer_sync(&priv->rx_timeout);
/* mask all interrupts */
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
/* disable dma & mac */
bcm6368_enetsw_disable_dma(priv, priv->tx_chan);
bcm6368_enetsw_disable_dma(priv, priv->rx_chan);
/* force reclaim of all tx buffers */
bcm6368_enetsw_tx_reclaim(dev, 1);
/* free the rx skb ring */
for (i = 0; i < priv->rx_ring_size; i++) {
struct bcm6368_enetsw_desc *desc;
if (!priv->rx_skb[i])
continue;
desc = &priv->rx_desc_cpu[i];
dma_unmap_single_attrs(kdev, desc->address, priv->rx_skb_size,
DMA_FROM_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
kfree_skb(priv->rx_skb[i]);
}
/* free remaining allocated memory */
kfree(priv->rx_skb);
kfree(priv->tx_skb);
dma_free_coherent(kdev, priv->rx_desc_alloc_size,
priv->rx_desc_cpu, priv->rx_desc_dma);
dma_free_coherent(kdev, priv->tx_desc_alloc_size,
priv->tx_desc_cpu, priv->tx_desc_dma);
if (priv->irq_tx != -1)
free_irq(priv->irq_tx, dev);
free_irq(priv->irq_rx, dev);
return 0;
}
static const struct net_device_ops bcm6368_enetsw_ops = {
.ndo_open = bcm6368_enetsw_open,
.ndo_stop = bcm6368_enetsw_stop,
.ndo_start_xmit = bcm6368_enetsw_start_xmit,
};
static int bcm6368_enetsw_probe(struct platform_device *pdev)
{
struct bcm6368_enetsw *priv;
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
struct net_device *ndev;
struct resource *res;
unsigned i;
int ret;
ndev = alloc_etherdev(sizeof(*priv));
if (!ndev)
return -ENOMEM;
priv = netdev_priv(ndev);
priv->num_pms = of_count_phandle_with_args(node, "power-domains",
"#power-domain-cells");
if (priv->num_pms > 1) {
priv->pm = devm_kcalloc(dev, priv->num_pms,
sizeof(struct device *), GFP_KERNEL);
if (!priv->pm)
return -ENOMEM;
priv->link_pm = devm_kcalloc(dev, priv->num_pms,
sizeof(struct device_link *),
GFP_KERNEL);
if (!priv->link_pm)
return -ENOMEM;
for (i = 0; i < priv->num_pms; i++) {
priv->pm[i] = genpd_dev_pm_attach_by_id(dev, i);
if (IS_ERR(priv->pm[i])) {
dev_err(dev, "error getting pm %d\n", i);
return -EINVAL;
}
priv->link_pm[i] = device_link_add(dev, priv->pm[i],
DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME |
DL_FLAG_RPM_ACTIVE);
}
}
pm_runtime_enable(dev);
pm_runtime_no_callbacks(dev);
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_disable(dev);
dev_info(dev, "PM prober defer: ret=%d\n", ret);
return -EPROBE_DEFER;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
priv->dma_base = devm_ioremap_resource(dev, res);
if (IS_ERR(priv->dma_base))
return PTR_ERR(priv->dma_base);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"dma-channels");
priv->dma_chan = devm_ioremap_resource(dev, res);
if (IS_ERR(priv->dma_chan))
return PTR_ERR(priv->dma_chan);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma-sram");
priv->dma_sram = devm_ioremap_resource(dev, res);
if (IS_ERR(priv->dma_sram))
return PTR_ERR(priv->dma_sram);
priv->irq_rx = platform_get_irq_byname(pdev, "rx");
if (!priv->irq_rx)
return -ENODEV;
priv->irq_tx = platform_get_irq_byname(pdev, "tx");
if (!priv->irq_tx)
return -ENODEV;
else if (priv->irq_tx < 0)
priv->irq_tx = -1;
if (device_property_read_u32(dev, "dma-rx", &priv->rx_chan))
return -ENODEV;
if (device_property_read_u32(dev, "dma-tx", &priv->tx_chan))
return -ENODEV;
priv->rx_ring_size = ENETSW_DEF_RX_DESC;
priv->tx_ring_size = ENETSW_DEF_TX_DESC;
priv->dma_maxburst = ENETSW_DMA_MAXBURST;
priv->copybreak = ENETSW_DEF_CPY_BREAK;
priv->dma_chan_en_mask = DMAC_CHANCFG_EN_MASK;
priv->dma_chan_int_mask = DMAC_IR_PKTDONE_MASK;
priv->dma_chan_width = DMA_CHAN_WIDTH;
of_get_mac_address(node, ndev->dev_addr);
if (is_valid_ether_addr(ndev->dev_addr)) {
dev_info(dev, "mtd mac %pM\n", ndev->dev_addr);
} else {
random_ether_addr(ndev->dev_addr);
dev_info(dev, "random mac %pM\n", ndev->dev_addr);
}
priv->rx_skb_size = ALIGN(ndev->mtu + ENETSW_MTU_OVERHEAD,
priv->dma_maxburst * 4);
priv->num_clocks = of_clk_get_parent_count(node);
if (priv->num_clocks) {
priv->clock = devm_kcalloc(dev, priv->num_clocks,
sizeof(struct clk *), GFP_KERNEL);
if (!priv->clock)
return -ENOMEM;
}
for (i = 0; i < priv->num_clocks; i++) {
priv->clock[i] = of_clk_get(node, i);
if (IS_ERR(priv->clock[i])) {
dev_err(dev, "error getting clock %d\n", i);
return -EINVAL;
}
ret = clk_prepare_enable(priv->clock[i]);
if (ret) {
dev_err(dev, "error enabling clock %d\n", i);
return ret;
}
}
priv->num_resets = of_count_phandle_with_args(node, "resets",
"#reset-cells");
if (priv->num_resets) {
priv->reset = devm_kcalloc(dev, priv->num_resets,
sizeof(struct reset_control *),
GFP_KERNEL);
if (!priv->reset)
return -ENOMEM;
}
for (i = 0; i < priv->num_resets; i++) {
priv->reset[i] = devm_reset_control_get_by_index(dev, i);
if (IS_ERR(priv->reset[i])) {
dev_err(dev, "error getting reset %d\n", i);
return -EINVAL;
}
ret = reset_control_reset(priv->reset[i]);
if (ret) {
dev_err(dev, "error performing reset %d\n", i);
return ret;
}
}
spin_lock_init(&priv->rx_lock);
timer_setup(&priv->rx_timeout, bcm6368_enetsw_refill_rx_timer, 0);
/* register netdevice */
ndev->netdev_ops = &bcm6368_enetsw_ops;
ndev->min_mtu = ETH_ZLEN;
ndev->mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
ndev->max_mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
netif_napi_add(ndev, &priv->napi, bcm6368_enetsw_poll, 16);
SET_NETDEV_DEV(ndev, dev);
ret = register_netdev(ndev);
if (ret)
goto out_disable_clk;
netif_carrier_off(ndev);
platform_set_drvdata(pdev, ndev);
priv->pdev = pdev;
priv->net_dev = ndev;
return 0;
out_disable_clk:
for (i = 0; i < priv->num_resets; i++)
reset_control_assert(priv->reset[i]);
for (i = 0; i < priv->num_clocks; i++)
clk_disable_unprepare(priv->clock[i]);
return ret;
}
static int bcm6368_enetsw_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct net_device *ndev = platform_get_drvdata(pdev);
struct bcm6368_enetsw *priv = netdev_priv(ndev);
unsigned int i;
unregister_netdev(ndev);
pm_runtime_put_sync(dev);
for (i = 0; priv->pm && i < priv->num_pms; i++) {
dev_pm_domain_detach(priv->pm[i], true);
device_link_del(priv->link_pm[i]);
}
for (i = 0; i < priv->num_resets; i++)
reset_control_assert(priv->reset[i]);
for (i = 0; i < priv->num_clocks; i++)
clk_disable_unprepare(priv->clock[i]);
free_netdev(ndev);
return 0;
}
static const struct of_device_id bcm6368_enetsw_of_match[] = {
{ .compatible = "brcm,bcm6318-enetsw", },
{ .compatible = "brcm,bcm6328-enetsw", },
{ .compatible = "brcm,bcm6362-enetsw", },
{ .compatible = "brcm,bcm6368-enetsw", },
{ .compatible = "brcm,bcm63268-enetsw", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, bcm6368_enetsw_of_match);
static struct platform_driver bcm6368_enetsw_driver = {
.driver = {
.name = "bcm6368-enetsw",
.of_match_table = of_match_ptr(bcm6368_enetsw_of_match),
},
.probe = bcm6368_enetsw_probe,
.remove = bcm6368_enetsw_remove,
};
module_platform_driver(bcm6368_enetsw_driver);