difos/target/linux/realtek/files-5.10/drivers/net/dsa/rtl83xx/rtl838x.c
INAGAKI Hiroshi 95170b4350 realtek: copy config/files/patches to 5.10
this patch copies the following files from 5.4 to 5.10:

- config-5.4   -> config-5.10
- files-5.4/   -> files-5.10/
- patches-5.4/ -> patches-5.10/

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[rebase on change in files-5.4]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-09-26 00:32:17 +02:00

859 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include "rtl83xx.h"
extern struct mutex smi_lock;
void rtl838x_print_matrix(void)
{
unsigned volatile int *ptr8;
int i;
ptr8 = RTL838X_SW_BASE + RTL838X_PORT_ISO_CTRL(0);
for (i = 0; i < 28; i += 8)
pr_debug("> %8x %8x %8x %8x %8x %8x %8x %8x\n",
ptr8[i + 0], ptr8[i + 1], ptr8[i + 2], ptr8[i + 3],
ptr8[i + 4], ptr8[i + 5], ptr8[i + 6], ptr8[i + 7]);
pr_debug("CPU_PORT> %8x\n", ptr8[28]);
}
static inline int rtl838x_port_iso_ctrl(int p)
{
return RTL838X_PORT_ISO_CTRL(p);
}
static inline void rtl838x_exec_tbl0_cmd(u32 cmd)
{
sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_0);
do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_0) & BIT(15));
}
static inline void rtl838x_exec_tbl1_cmd(u32 cmd)
{
sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_1);
do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_1) & BIT(15));
}
static inline int rtl838x_tbl_access_data_0(int i)
{
return RTL838X_TBL_ACCESS_DATA_0(i);
}
static void rtl838x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
{
u32 v;
// Read VLAN table (0) via register 0
struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);
rtl_table_read(r, vlan);
info->tagged_ports = sw_r32(rtl_table_data(r, 0));
v = sw_r32(rtl_table_data(r, 1));
pr_debug("VLAN_READ %d: %016llx %08x\n", vlan, info->tagged_ports, v);
rtl_table_release(r);
info->profile_id = v & 0x7;
info->hash_mc_fid = !!(v & 0x8);
info->hash_uc_fid = !!(v & 0x10);
info->fid = (v >> 5) & 0x3f;
// Read UNTAG table (0) via table register 1
r = rtl_table_get(RTL8380_TBL_1, 0);
rtl_table_read(r, vlan);
info->untagged_ports = sw_r32(rtl_table_data(r, 0));
rtl_table_release(r);
}
static void rtl838x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info)
{
u32 v;
// Access VLAN table (0) via register 0
struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);
sw_w32(info->tagged_ports, rtl_table_data(r, 0));
v = info->profile_id;
v |= info->hash_mc_fid ? 0x8 : 0;
v |= info->hash_uc_fid ? 0x10 : 0;
v |= ((u32)info->fid) << 5;
sw_w32(v, rtl_table_data(r, 1));
rtl_table_write(r, vlan);
rtl_table_release(r);
}
static void rtl838x_vlan_set_untagged(u32 vlan, u64 portmask)
{
// Access UNTAG table (0) via register 1
struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 0);
sw_w32(portmask & 0x1fffffff, rtl_table_data(r, 0));
rtl_table_write(r, vlan);
rtl_table_release(r);
}
/* Sets the L2 forwarding to be based on either the inner VLAN tag or the outer
*/
static void rtl838x_vlan_fwd_on_inner(int port, bool is_set)
{
if (is_set)
sw_w32_mask(BIT(port), 0, RTL838X_VLAN_PORT_FWD);
else
sw_w32_mask(0, BIT(port), RTL838X_VLAN_PORT_FWD);
}
static u64 rtl838x_l2_hash_seed(u64 mac, u32 vid)
{
return mac << 12 | vid;
}
/*
* Applies the same hash algorithm as the one used currently by the ASIC to the seed
* and returns a key into the L2 hash table
*/
static u32 rtl838x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
{
u32 h1, h2, h3, h;
if (sw_r32(priv->r->l2_ctrl_0) & 1) {
h1 = (seed >> 11) & 0x7ff;
h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f);
h2 = (seed >> 33) & 0x7ff;
h2 = ((h2 & 0x3f) << 5) | ((h2 >> 6) & 0x1f);
h3 = (seed >> 44) & 0x7ff;
h3 = ((h3 & 0x7f) << 4) | ((h3 >> 7) & 0xf);
h = h1 ^ h2 ^ h3 ^ ((seed >> 55) & 0x1ff);
h ^= ((seed >> 22) & 0x7ff) ^ (seed & 0x7ff);
} else {
h = ((seed >> 55) & 0x1ff) ^ ((seed >> 44) & 0x7ff)
^ ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff)
^ ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff);
}
return h;
}
static inline int rtl838x_mac_force_mode_ctrl(int p)
{
return RTL838X_MAC_FORCE_MODE_CTRL + (p << 2);
}
static inline int rtl838x_mac_port_ctrl(int p)
{
return RTL838X_MAC_PORT_CTRL(p);
}
static inline int rtl838x_l2_port_new_salrn(int p)
{
return RTL838X_L2_PORT_NEW_SALRN(p);
}
static inline int rtl838x_l2_port_new_sa_fwd(int p)
{
return RTL838X_L2_PORT_NEW_SA_FWD(p);
}
static inline int rtl838x_mac_link_spd_sts(int p)
{
return RTL838X_MAC_LINK_SPD_STS(p);
}
inline static int rtl838x_trk_mbr_ctr(int group)
{
return RTL838X_TRK_MBR_CTR + (group << 2);
}
/*
* Fills an L2 entry structure from the SoC registers
*/
static void rtl838x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
{
/* Table contains different entry types, we need to identify the right one:
* Check for MC entries, first
* In contrast to the RTL93xx SoCs, there is no valid bit, use heuristics to
* identify valid entries
*/
e->is_ip_mc = !!(r[0] & BIT(22));
e->is_ipv6_mc = !!(r[0] & BIT(21));
e->type = L2_INVALID;
if (!e->is_ip_mc && !e->is_ipv6_mc) {
e->mac[0] = (r[1] >> 20);
e->mac[1] = (r[1] >> 12);
e->mac[2] = (r[1] >> 4);
e->mac[3] = (r[1] & 0xf) << 4 | (r[2] >> 28);
e->mac[4] = (r[2] >> 20);
e->mac[5] = (r[2] >> 12);
e->rvid = r[2] & 0xfff;
e->vid = r[0] & 0xfff;
/* Is it a unicast entry? check multicast bit */
if (!(e->mac[0] & 1)) {
e->is_static = !!((r[0] >> 19) & 1);
e->port = (r[0] >> 12) & 0x1f;
e->block_da = !!(r[1] & BIT(30));
e->block_sa = !!(r[1] & BIT(31));
e->suspended = !!(r[1] & BIT(29));
e->next_hop = !!(r[1] & BIT(28));
if (e->next_hop) {
pr_info("Found next hop entry, need to read extra data\n");
e->nh_vlan_target = !!(r[0] & BIT(9));
e->nh_route_id = r[0] & 0x1ff;
}
e->age = (r[0] >> 17) & 0x3;
e->valid = true;
/* A valid entry has one of mutli-cast, aging, sa/da-blocking,
* next-hop or static entry bit set */
if (!(r[0] & 0x007c0000) && !(r[1] & 0xd0000000))
e->valid = false;
else
e->type = L2_UNICAST;
} else { // L2 multicast
pr_info("Got L2 MC entry: %08x %08x %08x\n", r[0], r[1], r[2]);
e->valid = true;
e->type = L2_MULTICAST;
e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
}
} else { // IPv4 and IPv6 multicast
e->valid = true;
e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
e->mc_gip = r[1];
e->mc_sip = r[2];
e->rvid = r[0] & 0xfff;
}
if (e->is_ip_mc)
e->type = IP4_MULTICAST;
if (e->is_ipv6_mc)
e->type = IP6_MULTICAST;
}
/*
* Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry
*/
static void rtl838x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
{
u64 mac = ether_addr_to_u64(e->mac);
if (!e->valid) {
r[0] = r[1] = r[2] = 0;
return;
}
r[0] = e->is_ip_mc ? BIT(22) : 0;
r[0] |= e->is_ipv6_mc ? BIT(21) : 0;
if (!e->is_ip_mc && !e->is_ipv6_mc) {
r[1] = mac >> 20;
r[2] = (mac & 0xfffff) << 12;
/* Is it a unicast entry? check multicast bit */
if (!(e->mac[0] & 1)) {
r[0] |= e->is_static ? BIT(19) : 0;
r[0] |= (e->port & 0x3f) << 12;
r[0] |= e->vid;
r[1] |= e->block_da ? BIT(30) : 0;
r[1] |= e->block_sa ? BIT(31) : 0;
r[1] |= e->suspended ? BIT(29) : 0;
r[2] |= e->rvid & 0xfff;
if (e->next_hop) {
r[1] |= BIT(28);
r[0] |= e->nh_vlan_target ? BIT(9) : 0;
r[0] |= e->nh_route_id &0x1ff;
}
r[0] |= (e->age & 0x3) << 17;
} else { // L2 Multicast
r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
r[2] |= e->rvid & 0xfff;
r[0] |= e->vid & 0xfff;
pr_info("FILL MC: %08x %08x %08x\n", r[0], r[1], r[2]);
}
} else { // IPv4 and IPv6 multicast
r[1] = e->mc_gip;
r[2] = e->mc_sip;
r[0] |= e->rvid;
}
}
/*
* Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
* hash is the id of the bucket and pos is the position of the entry in that bucket
* The data read from the SoC is filled into rtl838x_l2_entry
*/
static u64 rtl838x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
u64 entry;
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0); // Access L2 Table 0
u32 idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket
int i;
rtl_table_read(q, idx);
for (i= 0; i < 3; i++)
r[i] = sw_r32(rtl_table_data(q, i));
rtl_table_release(q);
rtl838x_fill_l2_entry(r, e);
if (!e->valid)
return 0;
entry = (((u64) r[1]) << 32) | (r[2] & 0xfffff000) | (r[0] & 0xfff);
return entry;
}
static void rtl838x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0);
int i;
u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket
rtl838x_fill_l2_row(r, e);
for (i= 0; i < 3; i++)
sw_w32(r[i], rtl_table_data(q, i));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static u64 rtl838x_read_cam(int idx, struct rtl838x_l2_entry *e)
{
u64 entry;
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); // Access L2 Table 1
int i;
rtl_table_read(q, idx);
for (i= 0; i < 3; i++)
r[i] = sw_r32(rtl_table_data(q, i));
rtl_table_release(q);
rtl838x_fill_l2_entry(r, e);
if (!e->valid)
return 0;
pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
// Return MAC with concatenated VID ac concatenated ID
entry = (((u64) r[1]) << 32) | (r[2] & 0xfffff000) | (r[0] & 0xfff);
return entry;
}
static void rtl838x_write_cam(int idx, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); // Access L2 Table 1
int i;
rtl838x_fill_l2_row(r, e);
for (i= 0; i < 3; i++)
sw_w32(r[i], rtl_table_data(q, i));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static u64 rtl838x_read_mcast_pmask(int idx)
{
u32 portmask;
// Read MC_PMSK (2) via register RTL8380_TBL_L2
struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);
rtl_table_read(q, idx);
portmask = sw_r32(rtl_table_data(q, 0));
rtl_table_release(q);
return portmask;
}
static void rtl838x_write_mcast_pmask(int idx, u64 portmask)
{
// Access MC_PMSK (2) via register RTL8380_TBL_L2
struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);
sw_w32(((u32)portmask) & 0x1fffffff, rtl_table_data(q, 0));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static void rtl838x_vlan_profile_setup(int profile)
{
u32 pmask_id = UNKNOWN_MC_PMASK;
// Enable L2 Learning BIT 0, portmask UNKNOWN_MC_PMASK for unknown MC traffic flooding
u32 p = 1 | pmask_id << 1 | pmask_id << 10 | pmask_id << 19;
sw_w32(p, RTL838X_VLAN_PROFILE(profile));
/* RTL8380 and RTL8390 use an index into the portmask table to set the
* unknown multicast portmask, setup a default at a safe location
* On RTL93XX, the portmask is directly set in the profile,
* see e.g. rtl9300_vlan_profile_setup
*/
rtl838x_write_mcast_pmask(UNKNOWN_MC_PMASK, 0x1fffffff);
}
static inline int rtl838x_vlan_port_egr_filter(int port)
{
return RTL838X_VLAN_PORT_EGR_FLTR;
}
static inline int rtl838x_vlan_port_igr_filter(int port)
{
return RTL838X_VLAN_PORT_IGR_FLTR(port);
}
static void rtl838x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
{
int i;
u32 cmd = 1 << 15 /* Execute cmd */
| 1 << 14 /* Read */
| 2 << 12 /* Table type 0b10 */
| (msti & 0xfff);
priv->r->exec_tbl0_cmd(cmd);
for (i = 0; i < 2; i++)
port_state[i] = sw_r32(priv->r->tbl_access_data_0(i));
}
static void rtl838x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
{
int i;
u32 cmd = 1 << 15 /* Execute cmd */
| 0 << 14 /* Write */
| 2 << 12 /* Table type 0b10 */
| (msti & 0xfff);
for (i = 0; i < 2; i++)
sw_w32(port_state[i], priv->r->tbl_access_data_0(i));
priv->r->exec_tbl0_cmd(cmd);
}
u64 rtl838x_traffic_get(int source)
{
return rtl838x_get_port_reg(rtl838x_port_iso_ctrl(source));
}
void rtl838x_traffic_set(int source, u64 dest_matrix)
{
rtl838x_set_port_reg(dest_matrix, rtl838x_port_iso_ctrl(source));
}
void rtl838x_traffic_enable(int source, int dest)
{
rtl838x_mask_port_reg(0, BIT(dest), rtl838x_port_iso_ctrl(source));
}
void rtl838x_traffic_disable(int source, int dest)
{
rtl838x_mask_port_reg(BIT(dest), 0, rtl838x_port_iso_ctrl(source));
}
/*
* Enables or disables the EEE/EEEP capability of a port
*/
static void rtl838x_port_eee_set(struct rtl838x_switch_priv *priv, int port, bool enable)
{
u32 v;
// This works only for Ethernet ports, and on the RTL838X, ports from 24 are SFP
if (port >= 24)
return;
pr_debug("In %s: setting port %d to %d\n", __func__, port, enable);
v = enable ? 0x3 : 0x0;
// Set EEE state for 100 (bit 9) & 1000MBit (bit 10)
sw_w32_mask(0x3 << 9, v << 9, priv->r->mac_force_mode_ctrl(port));
// Set TX/RX EEE state
if (enable) {
sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_TX_EN);
sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_RX_EN);
} else {
sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_TX_EN);
sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_RX_EN);
}
priv->ports[port].eee_enabled = enable;
}
/*
* Get EEE own capabilities and negotiation result
*/
static int rtl838x_eee_port_ability(struct rtl838x_switch_priv *priv,
struct ethtool_eee *e, int port)
{
u64 link;
if (port >= 24)
return 0;
link = rtl839x_get_port_reg_le(RTL838X_MAC_LINK_STS);
if (!(link & BIT(port)))
return 0;
if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(9))
e->advertised |= ADVERTISED_100baseT_Full;
if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(10))
e->advertised |= ADVERTISED_1000baseT_Full;
if (sw_r32(RTL838X_MAC_EEE_ABLTY) & BIT(port)) {
e->lp_advertised = ADVERTISED_100baseT_Full;
e->lp_advertised |= ADVERTISED_1000baseT_Full;
return 1;
}
return 0;
}
static void rtl838x_init_eee(struct rtl838x_switch_priv *priv, bool enable)
{
int i;
pr_info("Setting up EEE, state: %d\n", enable);
sw_w32_mask(0x4, 0, RTL838X_SMI_GLB_CTRL);
/* Set timers for EEE */
sw_w32(0x5001411, RTL838X_EEE_TX_TIMER_GIGA_CTRL);
sw_w32(0x5001417, RTL838X_EEE_TX_TIMER_GELITE_CTRL);
// Enable EEE MAC support on ports
for (i = 0; i < priv->cpu_port; i++) {
if (priv->ports[i].phy)
rtl838x_port_eee_set(priv, i, enable);
}
priv->eee_enabled = enable;
}
const struct rtl838x_reg rtl838x_reg = {
.mask_port_reg_be = rtl838x_mask_port_reg,
.set_port_reg_be = rtl838x_set_port_reg,
.get_port_reg_be = rtl838x_get_port_reg,
.mask_port_reg_le = rtl838x_mask_port_reg,
.set_port_reg_le = rtl838x_set_port_reg,
.get_port_reg_le = rtl838x_get_port_reg,
.stat_port_rst = RTL838X_STAT_PORT_RST,
.stat_rst = RTL838X_STAT_RST,
.stat_port_std_mib = RTL838X_STAT_PORT_STD_MIB,
.port_iso_ctrl = rtl838x_port_iso_ctrl,
.traffic_enable = rtl838x_traffic_enable,
.traffic_disable = rtl838x_traffic_disable,
.traffic_get = rtl838x_traffic_get,
.traffic_set = rtl838x_traffic_set,
.l2_ctrl_0 = RTL838X_L2_CTRL_0,
.l2_ctrl_1 = RTL838X_L2_CTRL_1,
.l2_port_aging_out = RTL838X_L2_PORT_AGING_OUT,
.smi_poll_ctrl = RTL838X_SMI_POLL_CTRL,
.l2_tbl_flush_ctrl = RTL838X_L2_TBL_FLUSH_CTRL,
.exec_tbl0_cmd = rtl838x_exec_tbl0_cmd,
.exec_tbl1_cmd = rtl838x_exec_tbl1_cmd,
.tbl_access_data_0 = rtl838x_tbl_access_data_0,
.isr_glb_src = RTL838X_ISR_GLB_SRC,
.isr_port_link_sts_chg = RTL838X_ISR_PORT_LINK_STS_CHG,
.imr_port_link_sts_chg = RTL838X_IMR_PORT_LINK_STS_CHG,
.imr_glb = RTL838X_IMR_GLB,
.vlan_tables_read = rtl838x_vlan_tables_read,
.vlan_set_tagged = rtl838x_vlan_set_tagged,
.vlan_set_untagged = rtl838x_vlan_set_untagged,
.mac_force_mode_ctrl = rtl838x_mac_force_mode_ctrl,
.vlan_profile_dump = rtl838x_vlan_profile_dump,
.vlan_profile_setup = rtl838x_vlan_profile_setup,
.vlan_fwd_on_inner = rtl838x_vlan_fwd_on_inner,
.stp_get = rtl838x_stp_get,
.stp_set = rtl838x_stp_set,
.mac_port_ctrl = rtl838x_mac_port_ctrl,
.l2_port_new_salrn = rtl838x_l2_port_new_salrn,
.l2_port_new_sa_fwd = rtl838x_l2_port_new_sa_fwd,
.mir_ctrl = RTL838X_MIR_CTRL,
.mir_dpm = RTL838X_MIR_DPM_CTRL,
.mir_spm = RTL838X_MIR_SPM_CTRL,
.mac_link_sts = RTL838X_MAC_LINK_STS,
.mac_link_dup_sts = RTL838X_MAC_LINK_DUP_STS,
.mac_link_spd_sts = rtl838x_mac_link_spd_sts,
.mac_rx_pause_sts = RTL838X_MAC_RX_PAUSE_STS,
.mac_tx_pause_sts = RTL838X_MAC_TX_PAUSE_STS,
.read_l2_entry_using_hash = rtl838x_read_l2_entry_using_hash,
.write_l2_entry_using_hash = rtl838x_write_l2_entry_using_hash,
.read_cam = rtl838x_read_cam,
.write_cam = rtl838x_write_cam,
.vlan_port_egr_filter = RTL838X_VLAN_PORT_EGR_FLTR,
.vlan_port_igr_filter = RTL838X_VLAN_PORT_IGR_FLTR(0),
.vlan_port_pb = RTL838X_VLAN_PORT_PB_VLAN,
.vlan_port_tag_sts_ctrl = RTL838X_VLAN_PORT_TAG_STS_CTRL,
.trk_mbr_ctr = rtl838x_trk_mbr_ctr,
.rma_bpdu_fld_pmask = RTL838X_RMA_BPDU_FLD_PMSK,
.spcl_trap_eapol_ctrl = RTL838X_SPCL_TRAP_EAPOL_CTRL,
.init_eee = rtl838x_init_eee,
.port_eee_set = rtl838x_port_eee_set,
.eee_port_ability = rtl838x_eee_port_ability,
.l2_hash_seed = rtl838x_l2_hash_seed,
.l2_hash_key = rtl838x_l2_hash_key,
.read_mcast_pmask = rtl838x_read_mcast_pmask,
.write_mcast_pmask = rtl838x_write_mcast_pmask,
};
irqreturn_t rtl838x_switch_irq(int irq, void *dev_id)
{
struct dsa_switch *ds = dev_id;
u32 status = sw_r32(RTL838X_ISR_GLB_SRC);
u32 ports = sw_r32(RTL838X_ISR_PORT_LINK_STS_CHG);
u32 link;
int i;
/* Clear status */
sw_w32(ports, RTL838X_ISR_PORT_LINK_STS_CHG);
pr_info("RTL8380 Link change: status: %x, ports %x\n", status, ports);
for (i = 0; i < 28; i++) {
if (ports & BIT(i)) {
link = sw_r32(RTL838X_MAC_LINK_STS);
if (link & BIT(i))
dsa_port_phylink_mac_change(ds, i, true);
else
dsa_port_phylink_mac_change(ds, i, false);
}
}
return IRQ_HANDLED;
}
int rtl838x_smi_wait_op(int timeout)
{
do {
timeout--;
udelay(10);
} while ((sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & 0x1) && (timeout >= 0));
if (timeout <= 0)
return -1;
return 0;
}
/*
* Reads a register in a page from the PHY
*/
int rtl838x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
{
u32 v;
u32 park_page;
if (port > 31) {
*val = 0xffff;
return 0;
}
if (page > 4095 || reg > 31)
return -ENOTSUPP;
mutex_lock(&smi_lock);
if (rtl838x_smi_wait_op(10000))
goto timeout;
sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
v = reg << 20 | page << 3;
sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
if (rtl838x_smi_wait_op(10000))
goto timeout;
*val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;
mutex_unlock(&smi_lock);
return 0;
timeout:
mutex_unlock(&smi_lock);
return -ETIMEDOUT;
}
/*
* Write to a register in a page of the PHY
*/
int rtl838x_write_phy(u32 port, u32 page, u32 reg, u32 val)
{
u32 v;
u32 park_page;
val &= 0xffff;
if (port > 31 || page > 4095 || reg > 31)
return -ENOTSUPP;
mutex_lock(&smi_lock);
if (rtl838x_smi_wait_op(10000))
goto timeout;
sw_w32(BIT(port), RTL838X_SMI_ACCESS_PHY_CTRL_0);
mdelay(10);
sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
v = reg << 20 | page << 3 | 0x4;
sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
if (rtl838x_smi_wait_op(10000))
goto timeout;
mutex_unlock(&smi_lock);
return 0;
timeout:
mutex_unlock(&smi_lock);
return -ETIMEDOUT;
}
/*
* Read an mmd register of a PHY
*/
int rtl838x_read_mmd_phy(u32 port, u32 addr, u32 reg, u32 *val)
{
u32 v;
mutex_lock(&smi_lock);
if (rtl838x_smi_wait_op(10000))
goto timeout;
sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
mdelay(10);
sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
v = addr << 16 | reg;
sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_3);
/* mmd-access | read | cmd-start */
v = 1 << 1 | 0 << 2 | 1;
sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);
if (rtl838x_smi_wait_op(10000))
goto timeout;
*val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;
mutex_unlock(&smi_lock);
return 0;
timeout:
mutex_unlock(&smi_lock);
return -ETIMEDOUT;
}
/*
* Write to an mmd register of a PHY
*/
int rtl838x_write_mmd_phy(u32 port, u32 addr, u32 reg, u32 val)
{
u32 v;
pr_debug("MMD write: port %d, dev %d, reg %d, val %x\n", port, addr, reg, val);
val &= 0xffff;
mutex_lock(&smi_lock);
if (rtl838x_smi_wait_op(10000))
goto timeout;
sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
mdelay(10);
sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
sw_w32_mask(0x1f << 16, addr << 16, RTL838X_SMI_ACCESS_PHY_CTRL_3);
sw_w32_mask(0xffff, reg, RTL838X_SMI_ACCESS_PHY_CTRL_3);
/* mmd-access | write | cmd-start */
v = 1 << 1 | 1 << 2 | 1;
sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);
if (rtl838x_smi_wait_op(10000))
goto timeout;
mutex_unlock(&smi_lock);
return 0;
timeout:
mutex_unlock(&smi_lock);
return -ETIMEDOUT;
}
void rtl8380_get_version(struct rtl838x_switch_priv *priv)
{
u32 rw_save, info_save;
u32 info;
rw_save = sw_r32(RTL838X_INT_RW_CTRL);
sw_w32(rw_save | 0x3, RTL838X_INT_RW_CTRL);
info_save = sw_r32(RTL838X_CHIP_INFO);
sw_w32(info_save | 0xA0000000, RTL838X_CHIP_INFO);
info = sw_r32(RTL838X_CHIP_INFO);
sw_w32(info_save, RTL838X_CHIP_INFO);
sw_w32(rw_save, RTL838X_INT_RW_CTRL);
if ((info & 0xFFFF) == 0x6275) {
if (((info >> 16) & 0x1F) == 0x1)
priv->version = RTL8380_VERSION_A;
else if (((info >> 16) & 0x1F) == 0x2)
priv->version = RTL8380_VERSION_B;
else
priv->version = RTL8380_VERSION_B;
} else {
priv->version = '-';
}
}
void rtl838x_vlan_profile_dump(int profile)
{
u32 p;
if (profile < 0 || profile > 7)
return;
p = sw_r32(RTL838X_VLAN_PROFILE(profile));
pr_info("VLAN profile %d: L2 learning: %d, UNKN L2MC FLD PMSK %d, \
UNKN IPMC FLD PMSK %d, UNKN IPv6MC FLD PMSK: %d",
profile, p & 1, (p >> 1) & 0x1ff, (p >> 10) & 0x1ff, (p >> 19) & 0x1ff);
}
void rtl8380_sds_rst(int mac)
{
u32 offset = (mac == 24) ? 0 : 0x100;
sw_w32_mask(1 << 11, 0, RTL838X_SDS4_FIB_REG0 + offset);
sw_w32_mask(0x3, 0, RTL838X_SDS4_REG28 + offset);
sw_w32_mask(0x3, 0x3, RTL838X_SDS4_REG28 + offset);
sw_w32_mask(0, 0x1 << 6, RTL838X_SDS4_DUMMY0 + offset);
sw_w32_mask(0x1 << 6, 0, RTL838X_SDS4_DUMMY0 + offset);
pr_debug("SERDES reset: %d\n", mac);
}
int rtl8380_sds_power(int mac, int val)
{
u32 mode = (val == 1) ? 0x4 : 0x9;
u32 offset = (mac == 24) ? 5 : 0;
if ((mac != 24) && (mac != 26)) {
pr_err("%s: not a fibre port: %d\n", __func__, mac);
return -1;
}
sw_w32_mask(0x1f << offset, mode << offset, RTL838X_SDS_MODE_SEL);
rtl8380_sds_rst(mac);
return 0;
}