difos/target/linux/realtek/files-5.10/drivers/net/dsa/rtl83xx/rtl839x.c
INAGAKI Hiroshi 95170b4350 realtek: copy config/files/patches to 5.10
this patch copies the following files from 5.4 to 5.10:

- config-5.4   -> config-5.10
- files-5.4/   -> files-5.10/
- patches-5.4/ -> patches-5.10/

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[rebase on change in files-5.4]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-09-26 00:32:17 +02:00

807 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include "rtl83xx.h"
extern struct mutex smi_lock;
extern struct rtl83xx_soc_info soc_info;
void rtl839x_print_matrix(void)
{
volatile u64 *ptr9;
int i;
ptr9 = RTL838X_SW_BASE + RTL839X_PORT_ISO_CTRL(0);
for (i = 0; i < 52; i += 4)
pr_debug("> %16llx %16llx %16llx %16llx\n",
ptr9[i + 0], ptr9[i + 1], ptr9[i + 2], ptr9[i + 3]);
pr_debug("CPU_PORT> %16llx\n", ptr9[52]);
}
static inline int rtl839x_port_iso_ctrl(int p)
{
return RTL839X_PORT_ISO_CTRL(p);
}
static inline void rtl839x_exec_tbl0_cmd(u32 cmd)
{
sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_0);
do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_0) & BIT(16));
}
static inline void rtl839x_exec_tbl1_cmd(u32 cmd)
{
sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_1);
do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_1) & BIT(16));
}
inline void rtl839x_exec_tbl2_cmd(u32 cmd)
{
sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_2);
do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_2) & (1 << 9));
}
static inline int rtl839x_tbl_access_data_0(int i)
{
return RTL839X_TBL_ACCESS_DATA_0(i);
}
static void rtl839x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
{
u32 u, v, w;
// Read VLAN table (0) via register 0
struct table_reg *r = rtl_table_get(RTL8390_TBL_0, 0);
rtl_table_read(r, vlan);
u = sw_r32(rtl_table_data(r, 0));
v = sw_r32(rtl_table_data(r, 1));
w = sw_r32(rtl_table_data(r, 2));
rtl_table_release(r);
info->tagged_ports = u;
info->tagged_ports = (info->tagged_ports << 21) | ((v >> 11) & 0x1fffff);
info->profile_id = w >> 30 | ((v & 1) << 2);
info->hash_mc_fid = !!(w & BIT(2));
info->hash_uc_fid = !!(w & BIT(3));
info->fid = (v >> 3) & 0xff;
// Read UNTAG table (0) via table register 1
r = rtl_table_get(RTL8390_TBL_1, 0);
rtl_table_read(r, vlan);
u = sw_r32(rtl_table_data(r, 0));
v = sw_r32(rtl_table_data(r, 1));
rtl_table_release(r);
info->untagged_ports = u;
info->untagged_ports = (info->untagged_ports << 21) | ((v >> 11) & 0x1fffff);
}
static void rtl839x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info)
{
u32 u, v, w;
// Access VLAN table (0) via register 0
struct table_reg *r = rtl_table_get(RTL8390_TBL_0, 0);
u = info->tagged_ports >> 21;
v = info->tagged_ports << 11;
v |= ((u32)info->fid) << 3;
v |= info->hash_uc_fid ? BIT(2) : 0;
v |= info->hash_mc_fid ? BIT(1) : 0;
v |= (info->profile_id & 0x4) ? 1 : 0;
w = ((u32)(info->profile_id & 3)) << 30;
sw_w32(u, rtl_table_data(r, 0));
sw_w32(v, rtl_table_data(r, 1));
sw_w32(w, rtl_table_data(r, 2));
rtl_table_write(r, vlan);
rtl_table_release(r);
}
static void rtl839x_vlan_set_untagged(u32 vlan, u64 portmask)
{
u32 u, v;
// Access UNTAG table (0) via table register 1
struct table_reg *r = rtl_table_get(RTL8390_TBL_1, 0);
u = portmask >> 21;
v = portmask << 11;
sw_w32(u, rtl_table_data(r, 0));
sw_w32(v, rtl_table_data(r, 1));
rtl_table_write(r, vlan);
rtl_table_release(r);
}
/* Sets the L2 forwarding to be based on either the inner VLAN tag or the outer
*/
static void rtl839x_vlan_fwd_on_inner(int port, bool is_set)
{
if (is_set)
rtl839x_mask_port_reg_be(BIT_ULL(port), 0ULL, RTL839X_VLAN_PORT_FWD);
else
rtl839x_mask_port_reg_be(0ULL, BIT_ULL(port), RTL839X_VLAN_PORT_FWD);
}
/*
* Hash seed is vid (actually rvid) concatenated with the MAC address
*/
static u64 rtl839x_l2_hash_seed(u64 mac, u32 vid)
{
u64 v = vid;
v <<= 48;
v |= mac;
return v;
}
/*
* Applies the same hash algorithm as the one used currently by the ASIC to the seed
* and returns a key into the L2 hash table
*/
static u32 rtl839x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
{
u32 h1, h2, h;
if (sw_r32(priv->r->l2_ctrl_0) & 1) {
h1 = (u32) (((seed >> 60) & 0x3f) ^ ((seed >> 54) & 0x3f)
^ ((seed >> 36) & 0x3f) ^ ((seed >> 30) & 0x3f)
^ ((seed >> 12) & 0x3f) ^ ((seed >> 6) & 0x3f));
h2 = (u32) (((seed >> 48) & 0x3f) ^ ((seed >> 42) & 0x3f)
^ ((seed >> 24) & 0x3f) ^ ((seed >> 18) & 0x3f)
^ (seed & 0x3f));
h = (h1 << 6) | h2;
} else {
h = (seed >> 60)
^ ((((seed >> 48) & 0x3f) << 6) | ((seed >> 54) & 0x3f))
^ ((seed >> 36) & 0xfff) ^ ((seed >> 24) & 0xfff)
^ ((seed >> 12) & 0xfff) ^ (seed & 0xfff);
}
return h;
}
static inline int rtl839x_mac_force_mode_ctrl(int p)
{
return RTL839X_MAC_FORCE_MODE_CTRL + (p << 2);
}
static inline int rtl839x_mac_port_ctrl(int p)
{
return RTL839X_MAC_PORT_CTRL(p);
}
static inline int rtl839x_l2_port_new_salrn(int p)
{
return RTL839X_L2_PORT_NEW_SALRN(p);
}
static inline int rtl839x_l2_port_new_sa_fwd(int p)
{
return RTL839X_L2_PORT_NEW_SA_FWD(p);
}
static inline int rtl839x_mac_link_spd_sts(int p)
{
return RTL839X_MAC_LINK_SPD_STS(p);
}
static inline int rtl839x_trk_mbr_ctr(int group)
{
return RTL839X_TRK_MBR_CTR + (group << 3);
}
static void rtl839x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
{
/* Table contains different entry types, we need to identify the right one:
* Check for MC entries, first
*/
e->is_ip_mc = !!(r[2] & BIT(31));
e->is_ipv6_mc = !!(r[2] & BIT(30));
e->type = L2_INVALID;
if (!e->is_ip_mc) {
e->mac[0] = (r[0] >> 12);
e->mac[1] = (r[0] >> 4);
e->mac[2] = ((r[1] >> 28) | (r[0] << 4));
e->mac[3] = (r[1] >> 20);
e->mac[4] = (r[1] >> 12);
e->mac[5] = (r[1] >> 4);
/* Is it a unicast entry? check multicast bit */
if (!(e->mac[0] & 1)) {
e->is_static = !!((r[2] >> 18) & 1);
e->vid = (r[2] >> 4) & 0xfff;
e->rvid = (r[0] >> 20) & 0xfff;
e->port = (r[2] >> 24) & 0x3f;
e->block_da = !!(r[2] & (1 << 19));
e->block_sa = !!(r[2] & (1 << 20));
e->suspended = !!(r[2] & (1 << 17));
e->next_hop = !!(r[2] & (1 << 16));
if (e->next_hop)
pr_info("Found next hop entry, need to read data\n");
e->age = (r[2] >> 21) & 3;
e->valid = true;
if (!(r[2] & 0xc0fd0000)) /* Check for valid entry */
e->valid = false;
else
e->type = L2_UNICAST;
} else {
e->valid = true;
e->type = L2_MULTICAST;
e->mc_portmask_index = (r[2]>>6) & 0xfff;
}
}
if (e->is_ip_mc) {
e->valid = true;
e->type = IP4_MULTICAST;
}
if (e->is_ipv6_mc) {
e->valid = true;
e->type = IP6_MULTICAST;
}
}
/*
* Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry
*/
static void rtl839x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
{
if (!e->valid) {
r[0] = r[1] = r[2] = 0;
return;
}
r[2] = e->is_ip_mc ? BIT(31) : 0;
r[2] |= e->is_ipv6_mc ? BIT(30) : 0;
if (!e->is_ip_mc && !e->is_ipv6_mc) {
r[0] = ((u32)e->mac[0]) << 12;
r[0] |= ((u32)e->mac[1]) << 4;
r[0] |= ((u32)e->mac[2]) >> 4;
r[1] = ((u32)e->mac[2]) << 28;
r[1] |= ((u32)e->mac[3]) << 20;
r[1] |= ((u32)e->mac[4]) << 12;
r[1] |= ((u32)e->mac[5]) << 4;
if (!(e->mac[0] & 1)) { // Not multicast
r[2] |= e->is_static ? BIT(18) : 0;
r[2] |= e->vid << 4;
r[0] |= ((u32)e->rvid) << 20;
r[2] |= e->port << 24;
r[2] |= e->block_da ? BIT(19) : 0;
r[2] |= e->block_sa ? BIT(20) : 0;
r[2] |= e->suspended ? BIT(17) : 0;
if (e->next_hop) {
r[2] |= BIT(16);
r[2] |= e->nh_vlan_target ? BIT(15) : 0;
r[2] |= (e->nh_route_id & 0x7ff) << 4;
}
r[2] |= ((u32)e->age) << 21;
} else { // L2 Multicast
r[0] |= ((u32)e->rvid) << 20;
r[2] |= ((u32)e->mc_portmask_index) << 6;
pr_debug("Write L2 MC entry: %08x %08x %08x\n", r[0], r[1], r[2]);
}
} else { // IPv4 or IPv6 MC entry
r[0] = ((u32)e->rvid) << 20;
r[2] |= ((u32)e->mc_portmask_index) << 6;
r[1] = e->mc_gip;
}
}
/*
* Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
* hash is the id of the bucket and pos is the position of the entry in that bucket
* The data read from the SoC is filled into rtl838x_l2_entry
*/
static u64 rtl839x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 0);
u32 idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket
int i;
rtl_table_read(q, idx);
for (i= 0; i < 3; i++)
r[i] = sw_r32(rtl_table_data(q, i));
rtl_table_release(q);
rtl839x_fill_l2_entry(r, e);
if (!e->valid)
return 0;
return rtl839x_l2_hash_seed(ether_addr_to_u64(&e->mac[0]), e->rvid);
}
static void rtl839x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 0);
int i;
u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket
rtl839x_fill_l2_row(r, e);
for (i= 0; i < 3; i++)
sw_w32(r[i], rtl_table_data(q, i));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static u64 rtl839x_read_cam(int idx, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 1); // Access L2 Table 1
int i;
rtl_table_read(q, idx);
for (i= 0; i < 3; i++)
r[i] = sw_r32(rtl_table_data(q, i));
rtl_table_release(q);
rtl839x_fill_l2_entry(r, e);
if (!e->valid)
return 0;
pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
// Return MAC with concatenated VID ac concatenated ID
return rtl839x_l2_hash_seed(ether_addr_to_u64(&e->mac[0]), e->rvid);
}
static void rtl839x_write_cam(int idx, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 1); // Access L2 Table 1
int i;
rtl839x_fill_l2_row(r, e);
for (i= 0; i < 3; i++)
sw_w32(r[i], rtl_table_data(q, i));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static u64 rtl839x_read_mcast_pmask(int idx)
{
u64 portmask;
// Read MC_PMSK (2) via register RTL8390_TBL_L2
struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 2);
rtl_table_read(q, idx);
portmask = sw_r32(rtl_table_data(q, 0));
portmask <<= 32;
portmask |= sw_r32(rtl_table_data(q, 1));
portmask >>= 11; // LSB is bit 11 in data registers
rtl_table_release(q);
return portmask;
}
static void rtl839x_write_mcast_pmask(int idx, u64 portmask)
{
// Access MC_PMSK (2) via register RTL8380_TBL_L2
struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 2);
portmask <<= 11; // LSB is bit 11 in data registers
sw_w32((u32)(portmask >> 32), rtl_table_data(q, 0));
sw_w32((u32)((portmask & 0xfffff800)), rtl_table_data(q, 1));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static void rtl839x_vlan_profile_setup(int profile)
{
u32 p[2];
u32 pmask_id = UNKNOWN_MC_PMASK;
p[0] = pmask_id; // Use portmaks 0xfff for unknown IPv6 MC flooding
// Enable L2 Learning BIT 0, portmask UNKNOWN_MC_PMASK for IP/L2-MC traffic flooding
p[1] = 1 | pmask_id << 1 | pmask_id << 13;
sw_w32(p[0], RTL839X_VLAN_PROFILE(profile));
sw_w32(p[1], RTL839X_VLAN_PROFILE(profile) + 4);
rtl839x_write_mcast_pmask(UNKNOWN_MC_PMASK, 0x001fffffffffffff);
}
static inline int rtl839x_vlan_port_egr_filter(int port)
{
return RTL839X_VLAN_PORT_EGR_FLTR(port);
}
static inline int rtl839x_vlan_port_igr_filter(int port)
{
return RTL839X_VLAN_PORT_IGR_FLTR(port);
}
u64 rtl839x_traffic_get(int source)
{
return rtl839x_get_port_reg_be(rtl839x_port_iso_ctrl(source));
}
void rtl839x_traffic_set(int source, u64 dest_matrix)
{
rtl839x_set_port_reg_be(dest_matrix, rtl839x_port_iso_ctrl(source));
}
void rtl839x_traffic_enable(int source, int dest)
{
rtl839x_mask_port_reg_be(0, BIT_ULL(dest), rtl839x_port_iso_ctrl(source));
}
void rtl839x_traffic_disable(int source, int dest)
{
rtl839x_mask_port_reg_be(BIT_ULL(dest), 0, rtl839x_port_iso_ctrl(source));
}
irqreturn_t rtl839x_switch_irq(int irq, void *dev_id)
{
struct dsa_switch *ds = dev_id;
u32 status = sw_r32(RTL839X_ISR_GLB_SRC);
u64 ports = rtl839x_get_port_reg_le(RTL839X_ISR_PORT_LINK_STS_CHG);
u64 link;
int i;
/* Clear status */
rtl839x_set_port_reg_le(ports, RTL839X_ISR_PORT_LINK_STS_CHG);
pr_debug("RTL8390 Link change: status: %x, ports %llx\n", status, ports);
for (i = 0; i < RTL839X_CPU_PORT; i++) {
if (ports & BIT_ULL(i)) {
link = rtl839x_get_port_reg_le(RTL839X_MAC_LINK_STS);
if (link & BIT_ULL(i))
dsa_port_phylink_mac_change(ds, i, true);
else
dsa_port_phylink_mac_change(ds, i, false);
}
}
return IRQ_HANDLED;
}
// TODO: unused
int rtl8390_sds_power(int mac, int val)
{
u32 offset = (mac == 48) ? 0x0 : 0x100;
u32 mode = val ? 0 : 1;
pr_debug("In %s: mac %d, set %d\n", __func__, mac, val);
if ((mac != 48) && (mac != 49)) {
pr_err("%s: not an SFP port: %d\n", __func__, mac);
return -1;
}
// Set bit 1003. 1000 starts at 7c
sw_w32_mask(BIT(11), mode << 11, RTL839X_SDS12_13_PWR0 + offset);
return 0;
}
int rtl839x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
{
u32 v;
if (port > 63 || page > 4095 || reg > 31)
return -ENOTSUPP;
mutex_lock(&smi_lock);
sw_w32_mask(0xffff0000, port << 16, RTL839X_PHYREG_DATA_CTRL);
v = reg << 5 | page << 10 | ((page == 0x1fff) ? 0x1f : 0) << 23;
sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
sw_w32(0x1ff, RTL839X_PHYREG_CTRL);
v |= 1;
sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
do {
} while (sw_r32(RTL839X_PHYREG_ACCESS_CTRL) & 0x1);
*val = sw_r32(RTL839X_PHYREG_DATA_CTRL) & 0xffff;
mutex_unlock(&smi_lock);
return 0;
}
int rtl839x_write_phy(u32 port, u32 page, u32 reg, u32 val)
{
u32 v;
int err = 0;
val &= 0xffff;
if (port > 63 || page > 4095 || reg > 31)
return -ENOTSUPP;
mutex_lock(&smi_lock);
// Set PHY to access
rtl839x_set_port_reg_le(BIT_ULL(port), RTL839X_PHYREG_PORT_CTRL);
sw_w32_mask(0xffff0000, val << 16, RTL839X_PHYREG_DATA_CTRL);
v = reg << 5 | page << 10 | ((page == 0x1fff) ? 0x1f : 0) << 23;
sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
sw_w32(0x1ff, RTL839X_PHYREG_CTRL);
v |= BIT(3) | 1; /* Write operation and execute */
sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
do {
} while (sw_r32(RTL839X_PHYREG_ACCESS_CTRL) & 0x1);
if (sw_r32(RTL839X_PHYREG_ACCESS_CTRL) & 0x2)
err = -EIO;
mutex_unlock(&smi_lock);
return err;
}
/*
* Read an mmd register of the PHY
*/
int rtl839x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val)
{
int err = 0;
u32 v;
mutex_lock(&smi_lock);
// Set PHY to access
sw_w32_mask(0xffff << 16, port << 16, RTL839X_PHYREG_DATA_CTRL);
// Set MMD device number and register to write to
sw_w32(devnum << 16 | (regnum & 0xffff), RTL839X_PHYREG_MMD_CTRL);
v = BIT(2) | BIT(0); // MMD-access | EXEC
sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
do {
v = sw_r32(RTL839X_PHYREG_ACCESS_CTRL);
} while (v & BIT(0));
// There is no error-checking via BIT 1 of v, as it does not seem to be set correctly
*val = (sw_r32(RTL839X_PHYREG_DATA_CTRL) & 0xffff);
pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, *val, err);
mutex_unlock(&smi_lock);
return err;
}
/*
* Write to an mmd register of the PHY
*/
int rtl839x_write_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 val)
{
int err = 0;
u32 v;
mutex_lock(&smi_lock);
// Set PHY to access
rtl839x_set_port_reg_le(BIT_ULL(port), RTL839X_PHYREG_PORT_CTRL);
// Set data to write
sw_w32_mask(0xffff << 16, val << 16, RTL839X_PHYREG_DATA_CTRL);
// Set MMD device number and register to write to
sw_w32(devnum << 16 | (regnum & 0xffff), RTL839X_PHYREG_MMD_CTRL);
v = BIT(3) | BIT(2) | BIT(0); // WRITE | MMD-access | EXEC
sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL);
do {
v = sw_r32(RTL839X_PHYREG_ACCESS_CTRL);
} while (v & BIT(0));
pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, val, err);
mutex_unlock(&smi_lock);
return err;
}
void rtl8390_get_version(struct rtl838x_switch_priv *priv)
{
u32 info;
sw_w32_mask(0xf << 28, 0xa << 28, RTL839X_CHIP_INFO);
info = sw_r32(RTL839X_CHIP_INFO);
pr_debug("Chip-Info: %x\n", info);
priv->version = RTL8390_VERSION_A;
}
void rtl839x_vlan_profile_dump(int profile)
{
u32 p[2];
if (profile < 0 || profile > 7)
return;
p[0] = sw_r32(RTL839X_VLAN_PROFILE(profile));
p[1] = sw_r32(RTL839X_VLAN_PROFILE(profile) + 4);
pr_info("VLAN profile %d: L2 learning: %d, UNKN L2MC FLD PMSK %d, \
UNKN IPMC FLD PMSK %d, UNKN IPv6MC FLD PMSK: %d",
profile, p[1] & 1, (p[1] >> 1) & 0xfff, (p[1] >> 13) & 0xfff,
(p[0]) & 0xfff);
pr_info("VLAN profile %d: raw %08x, %08x\n", profile, p[0], p[1]);
}
static void rtl839x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
{
int i;
u32 cmd = 1 << 16 /* Execute cmd */
| 0 << 15 /* Read */
| 5 << 12 /* Table type 0b101 */
| (msti & 0xfff);
priv->r->exec_tbl0_cmd(cmd);
for (i = 0; i < 4; i++)
port_state[i] = sw_r32(priv->r->tbl_access_data_0(i));
}
static void rtl839x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
{
int i;
u32 cmd = 1 << 16 /* Execute cmd */
| 1 << 15 /* Write */
| 5 << 12 /* Table type 0b101 */
| (msti & 0xfff);
for (i = 0; i < 4; i++)
sw_w32(port_state[i], priv->r->tbl_access_data_0(i));
priv->r->exec_tbl0_cmd(cmd);
}
/*
* Enables or disables the EEE/EEEP capability of a port
*/
void rtl839x_port_eee_set(struct rtl838x_switch_priv *priv, int port, bool enable)
{
u32 v;
// This works only for Ethernet ports, and on the RTL839X, ports above 47 are SFP
if (port >= 48)
return;
enable = true;
pr_debug("In %s: setting port %d to %d\n", __func__, port, enable);
v = enable ? 0xf : 0x0;
// Set EEE for 100, 500, 1000MBit and 10GBit
sw_w32_mask(0xf << 8, v << 8, rtl839x_mac_force_mode_ctrl(port));
// Set TX/RX EEE state
v = enable ? 0x3 : 0x0;
sw_w32(v, RTL839X_EEE_CTRL(port));
priv->ports[port].eee_enabled = enable;
}
/*
* Get EEE own capabilities and negotiation result
*/
int rtl839x_eee_port_ability(struct rtl838x_switch_priv *priv, struct ethtool_eee *e, int port)
{
u64 link, a;
if (port >= 48)
return 0;
link = rtl839x_get_port_reg_le(RTL839X_MAC_LINK_STS);
if (!(link & BIT_ULL(port)))
return 0;
if (sw_r32(rtl839x_mac_force_mode_ctrl(port)) & BIT(8))
e->advertised |= ADVERTISED_100baseT_Full;
if (sw_r32(rtl839x_mac_force_mode_ctrl(port)) & BIT(10))
e->advertised |= ADVERTISED_1000baseT_Full;
a = rtl839x_get_port_reg_le(RTL839X_MAC_EEE_ABLTY);
pr_info("Link partner: %016llx\n", a);
if (rtl839x_get_port_reg_le(RTL839X_MAC_EEE_ABLTY) & BIT_ULL(port)) {
e->lp_advertised = ADVERTISED_100baseT_Full;
e->lp_advertised |= ADVERTISED_1000baseT_Full;
return 1;
}
return 0;
}
static void rtl839x_init_eee(struct rtl838x_switch_priv *priv, bool enable)
{
int i;
pr_info("Setting up EEE, state: %d\n", enable);
// Set wake timer for TX and pause timer both to 0x21
sw_w32_mask(0xff << 20| 0xff, 0x21 << 20| 0x21, RTL839X_EEE_TX_TIMER_GELITE_CTRL);
// Set pause wake timer for GIGA-EEE to 0x11
sw_w32_mask(0xff << 20, 0x11 << 20, RTL839X_EEE_TX_TIMER_GIGA_CTRL);
// Set pause wake timer for 10GBit ports to 0x11
sw_w32_mask(0xff << 20, 0x11 << 20, RTL839X_EEE_TX_TIMER_10G_CTRL);
// Setup EEE on all ports
for (i = 0; i < priv->cpu_port; i++) {
if (priv->ports[i].phy)
rtl839x_port_eee_set(priv, i, enable);
}
priv->eee_enabled = enable;
}
const struct rtl838x_reg rtl839x_reg = {
.mask_port_reg_be = rtl839x_mask_port_reg_be,
.set_port_reg_be = rtl839x_set_port_reg_be,
.get_port_reg_be = rtl839x_get_port_reg_be,
.mask_port_reg_le = rtl839x_mask_port_reg_le,
.set_port_reg_le = rtl839x_set_port_reg_le,
.get_port_reg_le = rtl839x_get_port_reg_le,
.stat_port_rst = RTL839X_STAT_PORT_RST,
.stat_rst = RTL839X_STAT_RST,
.stat_port_std_mib = RTL839X_STAT_PORT_STD_MIB,
.traffic_enable = rtl839x_traffic_enable,
.traffic_disable = rtl839x_traffic_disable,
.traffic_get = rtl839x_traffic_get,
.traffic_set = rtl839x_traffic_set,
.port_iso_ctrl = rtl839x_port_iso_ctrl,
.l2_ctrl_0 = RTL839X_L2_CTRL_0,
.l2_ctrl_1 = RTL839X_L2_CTRL_1,
.l2_port_aging_out = RTL839X_L2_PORT_AGING_OUT,
.smi_poll_ctrl = RTL839X_SMI_PORT_POLLING_CTRL,
.l2_tbl_flush_ctrl = RTL839X_L2_TBL_FLUSH_CTRL,
.exec_tbl0_cmd = rtl839x_exec_tbl0_cmd,
.exec_tbl1_cmd = rtl839x_exec_tbl1_cmd,
.tbl_access_data_0 = rtl839x_tbl_access_data_0,
.isr_glb_src = RTL839X_ISR_GLB_SRC,
.isr_port_link_sts_chg = RTL839X_ISR_PORT_LINK_STS_CHG,
.imr_port_link_sts_chg = RTL839X_IMR_PORT_LINK_STS_CHG,
.imr_glb = RTL839X_IMR_GLB,
.vlan_tables_read = rtl839x_vlan_tables_read,
.vlan_set_tagged = rtl839x_vlan_set_tagged,
.vlan_set_untagged = rtl839x_vlan_set_untagged,
.vlan_profile_dump = rtl839x_vlan_profile_dump,
.vlan_profile_setup = rtl839x_vlan_profile_setup,
.vlan_fwd_on_inner = rtl839x_vlan_fwd_on_inner,
.stp_get = rtl839x_stp_get,
.stp_set = rtl839x_stp_set,
.mac_force_mode_ctrl = rtl839x_mac_force_mode_ctrl,
.mac_port_ctrl = rtl839x_mac_port_ctrl,
.l2_port_new_salrn = rtl839x_l2_port_new_salrn,
.l2_port_new_sa_fwd = rtl839x_l2_port_new_sa_fwd,
.mir_ctrl = RTL839X_MIR_CTRL,
.mir_dpm = RTL839X_MIR_DPM_CTRL,
.mir_spm = RTL839X_MIR_SPM_CTRL,
.mac_link_sts = RTL839X_MAC_LINK_STS,
.mac_link_dup_sts = RTL839X_MAC_LINK_DUP_STS,
.mac_link_spd_sts = rtl839x_mac_link_spd_sts,
.mac_rx_pause_sts = RTL839X_MAC_RX_PAUSE_STS,
.mac_tx_pause_sts = RTL839X_MAC_TX_PAUSE_STS,
.read_l2_entry_using_hash = rtl839x_read_l2_entry_using_hash,
.write_l2_entry_using_hash = rtl839x_write_l2_entry_using_hash,
.read_cam = rtl839x_read_cam,
.write_cam = rtl839x_write_cam,
.vlan_port_egr_filter = RTL839X_VLAN_PORT_EGR_FLTR(0),
.vlan_port_igr_filter = RTL839X_VLAN_PORT_IGR_FLTR(0),
.vlan_port_pb = RTL839X_VLAN_PORT_PB_VLAN,
.vlan_port_tag_sts_ctrl = RTL839X_VLAN_PORT_TAG_STS_CTRL,
.trk_mbr_ctr = rtl839x_trk_mbr_ctr,
.rma_bpdu_fld_pmask = RTL839X_RMA_BPDU_FLD_PMSK,
.spcl_trap_eapol_ctrl = RTL839X_SPCL_TRAP_EAPOL_CTRL,
.init_eee = rtl839x_init_eee,
.port_eee_set = rtl839x_port_eee_set,
.eee_port_ability = rtl839x_eee_port_ability,
.l2_hash_seed = rtl839x_l2_hash_seed,
.l2_hash_key = rtl839x_l2_hash_key,
.read_mcast_pmask = rtl839x_read_mcast_pmask,
.write_mcast_pmask = rtl839x_write_mcast_pmask,
};