difos/target/linux/bmips/files/drivers/net/ethernet/broadcom/bcm6368-enetsw.c
Álvaro Fernández Rojas ecc058b6a0 bmips: minor ethernet driver cleanups and fixes
Add some minor ethernet driver cleanups and fixes to improve code quality.

Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
2021-03-14 16:21:27 +01:00

1089 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* BCM6368 Ethernet Switch Controller Driver
*
* Copyright (C) 2021 Álvaro Fernández Rojas <noltari@gmail.com>
* Copyright (C) 2015 Jonas Gorski <jonas.gorski@gmail.com>
* Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/interrupt.h>
#include <linux/of_clk.h>
#include <linux/of_net.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
/* MTU */
#define ENETSW_TAG_SIZE 6
#define ENETSW_MTU_OVERHEAD (VLAN_ETH_HLEN + VLAN_HLEN + \
ENETSW_TAG_SIZE)
/* default number of descriptor */
#define ENETSW_DEF_RX_DESC 64
#define ENETSW_DEF_TX_DESC 32
#define ENETSW_DEF_CPY_BREAK 128
/* maximum burst len for dma (4 bytes unit) */
#define ENETSW_DMA_MAXBURST 8
/* DMA channels */
#define DMA_CHAN_WIDTH 0x10
/* Controller Configuration Register */
#define DMA_CFG_REG 0x0
#define DMA_CFG_EN_SHIFT 0
#define DMA_CFG_EN_MASK (1 << DMA_CFG_EN_SHIFT)
#define DMA_CFG_FLOWCH_MASK(x) (1 << ((x >> 1) + 1))
/* Flow Control Descriptor Low Threshold register */
#define DMA_FLOWCL_REG(x) (0x4 + (x) * 6)
/* Flow Control Descriptor High Threshold register */
#define DMA_FLOWCH_REG(x) (0x8 + (x) * 6)
/* Flow Control Descriptor Buffer Alloca Threshold register */
#define DMA_BUFALLOC_REG(x) (0xc + (x) * 6)
#define DMA_BUFALLOC_FORCE_SHIFT 31
#define DMA_BUFALLOC_FORCE_MASK (1 << DMA_BUFALLOC_FORCE_SHIFT)
/* Channel Configuration register */
#define DMAC_CHANCFG_REG 0x0
#define DMAC_CHANCFG_EN_SHIFT 0
#define DMAC_CHANCFG_EN_MASK (1 << DMAC_CHANCFG_EN_SHIFT)
#define DMAC_CHANCFG_PKTHALT_SHIFT 1
#define DMAC_CHANCFG_PKTHALT_MASK (1 << DMAC_CHANCFG_PKTHALT_SHIFT)
#define DMAC_CHANCFG_BUFHALT_SHIFT 2
#define DMAC_CHANCFG_BUFHALT_MASK (1 << DMAC_CHANCFG_BUFHALT_SHIFT)
#define DMAC_CHANCFG_CHAINING_SHIFT 2
#define DMAC_CHANCFG_CHAINING_MASK (1 << DMAC_CHANCFG_CHAINING_SHIFT)
#define DMAC_CHANCFG_WRAP_EN_SHIFT 3
#define DMAC_CHANCFG_WRAP_EN_MASK (1 << DMAC_CHANCFG_WRAP_EN_SHIFT)
#define DMAC_CHANCFG_FLOWC_EN_SHIFT 4
#define DMAC_CHANCFG_FLOWC_EN_MASK (1 << DMAC_CHANCFG_FLOWC_EN_SHIFT)
/* Interrupt Control/Status register */
#define DMAC_IR_REG 0x4
#define DMAC_IR_BUFDONE_MASK (1 << 0)
#define DMAC_IR_PKTDONE_MASK (1 << 1)
#define DMAC_IR_NOTOWNER_MASK (1 << 2)
/* Interrupt Mask register */
#define DMAC_IRMASK_REG 0x8
/* Maximum Burst Length */
#define DMAC_MAXBURST_REG 0xc
/* Ring Start Address register */
#define DMAS_RSTART_REG 0x0
/* State Ram Word 2 */
#define DMAS_SRAM2_REG 0x4
/* State Ram Word 3 */
#define DMAS_SRAM3_REG 0x8
/* State Ram Word 4 */
#define DMAS_SRAM4_REG 0xc
struct bcm6368_enetsw_desc {
u32 len_stat;
u32 address;
};
/* control */
#define DMADESC_LENGTH_SHIFT 16
#define DMADESC_LENGTH_MASK (0xfff << DMADESC_LENGTH_SHIFT)
#define DMADESC_OWNER_MASK (1 << 15)
#define DMADESC_EOP_MASK (1 << 14)
#define DMADESC_SOP_MASK (1 << 13)
#define DMADESC_ESOP_MASK (DMADESC_EOP_MASK | DMADESC_SOP_MASK)
#define DMADESC_WRAP_MASK (1 << 12)
#define DMADESC_USB_NOZERO_MASK (1 << 1)
#define DMADESC_USB_ZERO_MASK (1 << 0)
/* status */
#define DMADESC_UNDER_MASK (1 << 9)
#define DMADESC_APPEND_CRC (1 << 8)
#define DMADESC_OVSIZE_MASK (1 << 4)
#define DMADESC_RXER_MASK (1 << 2)
#define DMADESC_CRC_MASK (1 << 1)
#define DMADESC_OV_MASK (1 << 0)
#define DMADESC_ERR_MASK (DMADESC_UNDER_MASK | \
DMADESC_OVSIZE_MASK | \
DMADESC_RXER_MASK | \
DMADESC_CRC_MASK | \
DMADESC_OV_MASK)
struct bcm6368_enetsw {
void __iomem *dma_base;
void __iomem *dma_chan;
void __iomem *dma_sram;
struct device **pm;
struct device_link **link_pm;
int num_pms;
struct clk **clock;
unsigned int num_clocks;
struct reset_control **reset;
unsigned int num_resets;
int copybreak;
int irq_rx;
int irq_tx;
/* hw view of rx & tx dma ring */
dma_addr_t rx_desc_dma;
dma_addr_t tx_desc_dma;
/* allocated size (in bytes) for rx & tx dma ring */
unsigned int rx_desc_alloc_size;
unsigned int tx_desc_alloc_size;
struct napi_struct napi;
/* dma channel id for rx */
int rx_chan;
/* number of dma desc in rx ring */
int rx_ring_size;
/* cpu view of rx dma ring */
struct bcm6368_enetsw_desc *rx_desc_cpu;
/* current number of armed descriptor given to hardware for rx */
int rx_desc_count;
/* next rx descriptor to fetch from hardware */
int rx_curr_desc;
/* next dirty rx descriptor to refill */
int rx_dirty_desc;
/* size of allocated rx skbs */
unsigned int rx_skb_size;
/* list of skb given to hw for rx */
struct sk_buff **rx_skb;
/* used when rx skb allocation failed, so we defer rx queue
* refill */
struct timer_list rx_timeout;
/* lock rx_timeout against rx normal operation */
spinlock_t rx_lock;
/* dma channel id for tx */
int tx_chan;
/* number of dma desc in tx ring */
int tx_ring_size;
/* maximum dma burst size */
int dma_maxburst;
/* cpu view of rx dma ring */
struct bcm6368_enetsw_desc *tx_desc_cpu;
/* number of available descriptor for tx */
int tx_desc_count;
/* next tx descriptor avaiable */
int tx_curr_desc;
/* next dirty tx descriptor to reclaim */
int tx_dirty_desc;
/* list of skb given to hw for tx */
struct sk_buff **tx_skb;
/* lock used by tx reclaim and xmit */
spinlock_t tx_lock;
/* network device reference */
struct net_device *net_dev;
/* platform device reference */
struct platform_device *pdev;
/* dma channel enable mask */
u32 dma_chan_en_mask;
/* dma channel interrupt mask */
u32 dma_chan_int_mask;
/* dma channel width */
unsigned int dma_chan_width;
};
static inline void dma_writel(struct bcm6368_enetsw *priv, u32 val, u32 off)
{
__raw_writel(val, priv->dma_base + off);
}
static inline u32 dma_readl(struct bcm6368_enetsw *priv, u32 off, int chan)
{
return __raw_readl(priv->dma_chan + off + chan * priv->dma_chan_width);
}
static inline void dmac_writel(struct bcm6368_enetsw *priv, u32 val,
u32 off, int chan)
{
__raw_writel(val, priv->dma_chan + off + chan * priv->dma_chan_width);
}
static inline void dmas_writel(struct bcm6368_enetsw *priv, u32 val,
u32 off, int chan)
{
__raw_writel(val, priv->dma_sram + off + chan * priv->dma_chan_width);
}
/*
* refill rx queue
*/
static int bcm6368_enetsw_refill_rx(struct net_device *dev)
{
struct bcm6368_enetsw *priv = netdev_priv(dev);
while (priv->rx_desc_count < priv->rx_ring_size) {
struct bcm6368_enetsw_desc *desc;
struct sk_buff *skb;
dma_addr_t p;
int desc_idx;
u32 len_stat;
desc_idx = priv->rx_dirty_desc;
desc = &priv->rx_desc_cpu[desc_idx];
if (!priv->rx_skb[desc_idx]) {
skb = netdev_alloc_skb(dev, priv->rx_skb_size);
if (!skb)
break;
priv->rx_skb[desc_idx] = skb;
p = dma_map_single(&priv->pdev->dev, skb->data,
priv->rx_skb_size,
DMA_FROM_DEVICE);
desc->address = p;
}
len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
len_stat |= DMADESC_OWNER_MASK;
if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
len_stat |= DMADESC_WRAP_MASK;
priv->rx_dirty_desc = 0;
} else {
priv->rx_dirty_desc++;
}
wmb();
desc->len_stat = len_stat;
priv->rx_desc_count++;
/* tell dma engine we allocated one buffer */
dma_writel(priv, 1, DMA_BUFALLOC_REG(priv->rx_chan));
}
/* If rx ring is still empty, set a timer to try allocating
* again at a later time. */
if (priv->rx_desc_count == 0 && netif_running(dev)) {
dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
priv->rx_timeout.expires = jiffies + HZ;
add_timer(&priv->rx_timeout);
}
return 0;
}
/*
* timer callback to defer refill rx queue in case we're OOM
*/
static void bcm6368_enetsw_refill_rx_timer(struct timer_list *t)
{
struct bcm6368_enetsw *priv = from_timer(priv, t, rx_timeout);
struct net_device *dev = priv->net_dev;
spin_lock(&priv->rx_lock);
bcm6368_enetsw_refill_rx(dev);
spin_unlock(&priv->rx_lock);
}
/*
* extract packet from rx queue
*/
static int bcm6368_enetsw_receive_queue(struct net_device *dev, int budget)
{
struct bcm6368_enetsw *priv = netdev_priv(dev);
struct device *kdev = &priv->pdev->dev;
int processed = 0;
/* don't scan ring further than number of refilled
* descriptor */
if (budget > priv->rx_desc_count)
budget = priv->rx_desc_count;
do {
struct bcm6368_enetsw_desc *desc;
struct sk_buff *skb;
int desc_idx;
u32 len_stat;
unsigned int len;
desc_idx = priv->rx_curr_desc;
desc = &priv->rx_desc_cpu[desc_idx];
/* make sure we actually read the descriptor status at
* each loop */
rmb();
len_stat = desc->len_stat;
/* break if dma ownership belongs to hw */
if (len_stat & DMADESC_OWNER_MASK)
break;
processed++;
priv->rx_curr_desc++;
if (priv->rx_curr_desc == priv->rx_ring_size)
priv->rx_curr_desc = 0;
priv->rx_desc_count--;
/* if the packet does not have start of packet _and_
* end of packet flag set, then just recycle it */
if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
dev->stats.rx_dropped++;
continue;
}
/* valid packet */
skb = priv->rx_skb[desc_idx];
len = (len_stat & DMADESC_LENGTH_MASK)
>> DMADESC_LENGTH_SHIFT;
/* don't include FCS */
len -= 4;
if (len < priv->copybreak) {
struct sk_buff *nskb;
nskb = napi_alloc_skb(&priv->napi, len);
if (!nskb) {
/* forget packet, just rearm desc */
dev->stats.rx_dropped++;
continue;
}
dma_sync_single_for_cpu(kdev, desc->address,
len, DMA_FROM_DEVICE);
memcpy(nskb->data, skb->data, len);
dma_sync_single_for_device(kdev, desc->address,
len, DMA_FROM_DEVICE);
skb = nskb;
} else {
dma_unmap_single(&priv->pdev->dev, desc->address,
priv->rx_skb_size, DMA_FROM_DEVICE);
priv->rx_skb[desc_idx] = NULL;
}
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, dev);
dev->stats.rx_packets++;
dev->stats.rx_bytes += len;
netif_receive_skb(skb);
} while (--budget > 0);
if (processed || !priv->rx_desc_count) {
bcm6368_enetsw_refill_rx(dev);
/* kick rx dma */
dmac_writel(priv, priv->dma_chan_en_mask,
DMAC_CHANCFG_REG, priv->rx_chan);
}
return processed;
}
/*
* try to or force reclaim of transmitted buffers
*/
static int bcm6368_enetsw_tx_reclaim(struct net_device *dev, int force)
{
struct bcm6368_enetsw *priv = netdev_priv(dev);
int released = 0;
while (priv->tx_desc_count < priv->tx_ring_size) {
struct bcm6368_enetsw_desc *desc;
struct sk_buff *skb;
/* We run in a bh and fight against start_xmit, which
* is called with bh disabled */
spin_lock(&priv->tx_lock);
desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
spin_unlock(&priv->tx_lock);
break;
}
/* ensure other field of the descriptor were not read
* before we checked ownership */
rmb();
skb = priv->tx_skb[priv->tx_dirty_desc];
priv->tx_skb[priv->tx_dirty_desc] = NULL;
dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
DMA_TO_DEVICE);
priv->tx_dirty_desc++;
if (priv->tx_dirty_desc == priv->tx_ring_size)
priv->tx_dirty_desc = 0;
priv->tx_desc_count++;
spin_unlock(&priv->tx_lock);
if (desc->len_stat & DMADESC_UNDER_MASK)
dev->stats.tx_errors++;
dev_kfree_skb(skb);
released++;
}
if (netif_queue_stopped(dev) && released)
netif_wake_queue(dev);
return released;
}
/*
* poll func, called by network core
*/
static int bcm6368_enetsw_poll(struct napi_struct *napi, int budget)
{
struct bcm6368_enetsw *priv = container_of(napi, struct bcm6368_enetsw, napi);
struct net_device *dev = priv->net_dev;
int rx_work_done;
/* ack interrupts */
dmac_writel(priv, priv->dma_chan_int_mask,
DMAC_IR_REG, priv->rx_chan);
dmac_writel(priv, priv->dma_chan_int_mask,
DMAC_IR_REG, priv->tx_chan);
/* reclaim sent skb */
bcm6368_enetsw_tx_reclaim(dev, 0);
spin_lock(&priv->rx_lock);
rx_work_done = bcm6368_enetsw_receive_queue(dev, budget);
spin_unlock(&priv->rx_lock);
if (rx_work_done >= budget) {
/* rx queue is not yet empty/clean */
return rx_work_done;
}
/* no more packet in rx/tx queue, remove device from poll
* queue */
napi_complete_done(napi, rx_work_done);
/* restore rx/tx interrupt */
dmac_writel(priv, priv->dma_chan_int_mask,
DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, priv->dma_chan_int_mask,
DMAC_IRMASK_REG, priv->tx_chan);
return rx_work_done;
}
/*
* rx/tx dma interrupt handler
*/
static irqreturn_t bcm6368_enetsw_isr_dma(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct bcm6368_enetsw *priv = netdev_priv(dev);
/* mask rx/tx interrupts */
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
napi_schedule(&priv->napi);
return IRQ_HANDLED;
}
/*
* tx request callback
*/
static netdev_tx_t
bcm6368_enetsw_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct bcm6368_enetsw *priv = netdev_priv(dev);
struct bcm6368_enetsw_desc *desc;
u32 len_stat;
netdev_tx_t ret;
/* lock against tx reclaim */
spin_lock(&priv->tx_lock);
/* make sure the tx hw queue is not full, should not happen
* since we stop queue before it's the case */
if (unlikely(!priv->tx_desc_count)) {
netif_stop_queue(dev);
dev_err(&priv->pdev->dev, "xmit called with no tx desc "
"available?\n");
ret = NETDEV_TX_BUSY;
goto out_unlock;
}
/* pad small packets */
if (skb->len < (ETH_ZLEN + ETH_FCS_LEN)) {
int needed = (ETH_ZLEN + ETH_FCS_LEN) - skb->len;
char *data;
if (unlikely(skb_tailroom(skb) < needed)) {
struct sk_buff *nskb;
nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
if (!nskb) {
ret = NETDEV_TX_BUSY;
goto out_unlock;
}
dev_kfree_skb(skb);
skb = nskb;
}
data = skb_put_zero(skb, needed);
}
/* point to the next available desc */
desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
priv->tx_skb[priv->tx_curr_desc] = skb;
/* fill descriptor */
desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
DMA_TO_DEVICE);
len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
len_stat |= DMADESC_ESOP_MASK | DMADESC_APPEND_CRC |
DMADESC_OWNER_MASK;
priv->tx_curr_desc++;
if (priv->tx_curr_desc == priv->tx_ring_size) {
priv->tx_curr_desc = 0;
len_stat |= DMADESC_WRAP_MASK;
}
priv->tx_desc_count--;
/* dma might be already polling, make sure we update desc
* fields in correct order */
wmb();
desc->len_stat = len_stat;
wmb();
/* kick tx dma */
dmac_writel(priv, priv->dma_chan_en_mask, DMAC_CHANCFG_REG,
priv->tx_chan);
/* stop queue if no more desc available */
if (!priv->tx_desc_count)
netif_stop_queue(dev);
dev->stats.tx_bytes += skb->len;
dev->stats.tx_packets++;
ret = NETDEV_TX_OK;
out_unlock:
spin_unlock(&priv->tx_lock);
return ret;
}
/*
* disable dma in given channel
*/
static void bcm6368_enetsw_disable_dma(struct bcm6368_enetsw *priv, int chan)
{
int limit = 1000;
dmac_writel(priv, 0, DMAC_CHANCFG_REG, chan);
do {
u32 val;
val = dma_readl(priv, DMAC_CHANCFG_REG, chan);
if (!(val & DMAC_CHANCFG_EN_MASK))
break;
udelay(1);
} while (limit--);
}
static int bcm6368_enetsw_open(struct net_device *dev)
{
struct bcm6368_enetsw *priv = netdev_priv(dev);
struct device *kdev = &priv->pdev->dev;
int i, ret;
unsigned int size;
void *p;
u32 val;
/* mask all interrupts and request them */
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
ret = request_irq(priv->irq_rx, bcm6368_enetsw_isr_dma,
0, dev->name, dev);
if (ret)
goto out_freeirq;
if (priv->irq_tx != -1) {
ret = request_irq(priv->irq_tx, bcm6368_enetsw_isr_dma,
0, dev->name, dev);
if (ret)
goto out_freeirq_rx;
}
/* allocate rx dma ring */
size = priv->rx_ring_size * sizeof(struct bcm6368_enetsw_desc);
p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
if (!p) {
dev_err(kdev, "cannot allocate rx ring %u\n", size);
ret = -ENOMEM;
goto out_freeirq_tx;
}
memset(p, 0, size);
priv->rx_desc_alloc_size = size;
priv->rx_desc_cpu = p;
/* allocate tx dma ring */
size = priv->tx_ring_size * sizeof(struct bcm6368_enetsw_desc);
p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
if (!p) {
dev_err(kdev, "cannot allocate tx ring\n");
ret = -ENOMEM;
goto out_free_rx_ring;
}
memset(p, 0, size);
priv->tx_desc_alloc_size = size;
priv->tx_desc_cpu = p;
priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
GFP_KERNEL);
if (!priv->tx_skb) {
dev_err(kdev, "cannot allocate rx skb queue\n");
ret = -ENOMEM;
goto out_free_tx_ring;
}
priv->tx_desc_count = priv->tx_ring_size;
priv->tx_dirty_desc = 0;
priv->tx_curr_desc = 0;
spin_lock_init(&priv->tx_lock);
/* init & fill rx ring with skbs */
priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
GFP_KERNEL);
if (!priv->rx_skb) {
dev_err(kdev, "cannot allocate rx skb queue\n");
ret = -ENOMEM;
goto out_free_tx_skb;
}
priv->rx_desc_count = 0;
priv->rx_dirty_desc = 0;
priv->rx_curr_desc = 0;
/* initialize flow control buffer allocation */
dma_writel(priv, DMA_BUFALLOC_FORCE_MASK | 0,
DMA_BUFALLOC_REG(priv->rx_chan));
if (bcm6368_enetsw_refill_rx(dev)) {
dev_err(kdev, "cannot allocate rx skb queue\n");
ret = -ENOMEM;
goto out;
}
/* write rx & tx ring addresses */
dmas_writel(priv, priv->rx_desc_dma,
DMAS_RSTART_REG, priv->rx_chan);
dmas_writel(priv, priv->tx_desc_dma,
DMAS_RSTART_REG, priv->tx_chan);
/* clear remaining state ram for rx & tx channel */
dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->rx_chan);
dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->tx_chan);
dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->rx_chan);
dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->tx_chan);
dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->rx_chan);
dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->tx_chan);
/* set dma maximum burst len */
dmac_writel(priv, priv->dma_maxburst,
DMAC_MAXBURST_REG, priv->rx_chan);
dmac_writel(priv, priv->dma_maxburst,
DMAC_MAXBURST_REG, priv->tx_chan);
/* set flow control low/high threshold to 1/3 / 2/3 */
val = priv->rx_ring_size / 3;
dma_writel(priv, val, DMA_FLOWCL_REG(priv->rx_chan));
val = (priv->rx_ring_size * 2) / 3;
dma_writel(priv, val, DMA_FLOWCH_REG(priv->rx_chan));
/* all set, enable mac and interrupts, start dma engine and
* kick rx dma channel
*/
wmb();
dma_writel(priv, DMA_CFG_EN_MASK, DMA_CFG_REG);
dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
DMAC_CHANCFG_REG, priv->rx_chan);
/* watch "packet transferred" interrupt in rx and tx */
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IR_REG, priv->rx_chan);
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IR_REG, priv->tx_chan);
/* make sure we enable napi before rx interrupt */
napi_enable(&priv->napi);
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IRMASK_REG, priv->tx_chan);
netif_carrier_on(dev);
netif_start_queue(dev);
return 0;
out:
for (i = 0; i < priv->rx_ring_size; i++) {
struct bcm6368_enetsw_desc *desc;
if (!priv->rx_skb[i])
continue;
desc = &priv->rx_desc_cpu[i];
dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
DMA_FROM_DEVICE);
kfree_skb(priv->rx_skb[i]);
}
kfree(priv->rx_skb);
out_free_tx_skb:
kfree(priv->tx_skb);
out_free_tx_ring:
dma_free_coherent(kdev, priv->tx_desc_alloc_size,
priv->tx_desc_cpu, priv->tx_desc_dma);
out_free_rx_ring:
dma_free_coherent(kdev, priv->rx_desc_alloc_size,
priv->rx_desc_cpu, priv->rx_desc_dma);
out_freeirq_tx:
if (priv->irq_tx != -1)
free_irq(priv->irq_tx, dev);
out_freeirq_rx:
free_irq(priv->irq_rx, dev);
out_freeirq:
return ret;
}
static int bcm6368_enetsw_stop(struct net_device *dev)
{
struct bcm6368_enetsw *priv = netdev_priv(dev);
struct device *kdev = &priv->pdev->dev;
int i;
netif_stop_queue(dev);
napi_disable(&priv->napi);
del_timer_sync(&priv->rx_timeout);
/* mask all interrupts */
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
/* disable dma & mac */
bcm6368_enetsw_disable_dma(priv, priv->tx_chan);
bcm6368_enetsw_disable_dma(priv, priv->rx_chan);
/* force reclaim of all tx buffers */
bcm6368_enetsw_tx_reclaim(dev, 1);
/* free the rx skb ring */
for (i = 0; i < priv->rx_ring_size; i++) {
struct bcm6368_enetsw_desc *desc;
if (!priv->rx_skb[i])
continue;
desc = &priv->rx_desc_cpu[i];
dma_unmap_single_attrs(kdev, desc->address, priv->rx_skb_size,
DMA_FROM_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
kfree_skb(priv->rx_skb[i]);
}
/* free remaining allocated memory */
kfree(priv->rx_skb);
kfree(priv->tx_skb);
dma_free_coherent(kdev, priv->rx_desc_alloc_size,
priv->rx_desc_cpu, priv->rx_desc_dma);
dma_free_coherent(kdev, priv->tx_desc_alloc_size,
priv->tx_desc_cpu, priv->tx_desc_dma);
if (priv->irq_tx != -1)
free_irq(priv->irq_tx, dev);
free_irq(priv->irq_rx, dev);
return 0;
}
static const struct net_device_ops bcm6368_enetsw_ops = {
.ndo_open = bcm6368_enetsw_open,
.ndo_stop = bcm6368_enetsw_stop,
.ndo_start_xmit = bcm6368_enetsw_start_xmit,
};
static int bcm6368_enetsw_probe(struct platform_device *pdev)
{
struct bcm6368_enetsw *priv;
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
struct net_device *ndev;
struct resource *res;
const void *mac;
unsigned i;
int ret;
ndev = alloc_etherdev(sizeof(*priv));
if (!ndev)
return -ENOMEM;
priv = netdev_priv(ndev);
priv->num_pms = of_count_phandle_with_args(node, "power-domains",
"#power-domain-cells");
if (priv->num_pms > 1) {
priv->pm = devm_kcalloc(dev, priv->num_pms,
sizeof(struct device *), GFP_KERNEL);
if (!priv->pm)
return -ENOMEM;
priv->link_pm = devm_kcalloc(dev, priv->num_pms,
sizeof(struct device_link *),
GFP_KERNEL);
if (!priv->link_pm)
return -ENOMEM;
for (i = 0; i < priv->num_pms; i++) {
priv->pm[i] = genpd_dev_pm_attach_by_id(dev, i);
if (IS_ERR(priv->pm[i])) {
dev_err(dev, "error getting pm %d\n", i);
return -EINVAL;
}
priv->link_pm[i] = device_link_add(dev, priv->pm[i],
DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME |
DL_FLAG_RPM_ACTIVE);
}
}
pm_runtime_enable(dev);
pm_runtime_no_callbacks(dev);
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_disable(dev);
dev_info(dev, "PM prober defer: ret=%d\n", ret);
return -EPROBE_DEFER;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
priv->dma_base = devm_ioremap_resource(dev, res);
if (IS_ERR(priv->dma_base))
return PTR_ERR(priv->dma_base);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"dma-channels");
priv->dma_chan = devm_ioremap_resource(dev, res);
if (IS_ERR(priv->dma_chan))
return PTR_ERR(priv->dma_chan);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma-sram");
priv->dma_sram = devm_ioremap_resource(dev, res);
if (IS_ERR(priv->dma_sram))
return PTR_ERR(priv->dma_sram);
priv->irq_rx = platform_get_irq_byname(pdev, "rx");
if (!priv->irq_rx)
return -ENODEV;
priv->irq_tx = platform_get_irq_byname(pdev, "tx");
if (!priv->irq_tx)
return -ENODEV;
else if (priv->irq_tx < 0)
priv->irq_tx = -1;
if (device_property_read_u32(dev, "dma-rx", &priv->rx_chan))
return -ENODEV;
if (device_property_read_u32(dev, "dma-tx", &priv->tx_chan))
return -ENODEV;
priv->rx_ring_size = ENETSW_DEF_RX_DESC;
priv->tx_ring_size = ENETSW_DEF_TX_DESC;
priv->dma_maxburst = ENETSW_DMA_MAXBURST;
priv->copybreak = ENETSW_DEF_CPY_BREAK;
priv->dma_chan_en_mask = DMAC_CHANCFG_EN_MASK;
priv->dma_chan_int_mask = DMAC_IR_PKTDONE_MASK;
priv->dma_chan_width = DMA_CHAN_WIDTH;
mac = of_get_mac_address(node);
if (!IS_ERR_OR_NULL(mac)) {
memcpy(ndev->dev_addr, mac, ETH_ALEN);
dev_info(dev, "mtd mac %pM\n", ndev->dev_addr);
} else {
random_ether_addr(ndev->dev_addr);
dev_info(dev, "random mac %pM\n", ndev->dev_addr);
}
priv->rx_skb_size = ALIGN(ndev->mtu + ENETSW_MTU_OVERHEAD,
priv->dma_maxburst * 4);
priv->num_clocks = of_clk_get_parent_count(node);
if (priv->num_clocks) {
priv->clock = devm_kcalloc(dev, priv->num_clocks,
sizeof(struct clk *), GFP_KERNEL);
if (!priv->clock)
return -ENOMEM;
}
for (i = 0; i < priv->num_clocks; i++) {
priv->clock[i] = of_clk_get(node, i);
if (IS_ERR(priv->clock[i])) {
dev_err(dev, "error getting clock %d\n", i);
return -EINVAL;
}
ret = clk_prepare_enable(priv->clock[i]);
if (ret) {
dev_err(dev, "error enabling clock %d\n", i);
return ret;
}
}
priv->num_resets = of_count_phandle_with_args(node, "resets",
"#reset-cells");
if (priv->num_resets) {
priv->reset = devm_kcalloc(dev, priv->num_resets,
sizeof(struct reset_control *),
GFP_KERNEL);
if (!priv->reset)
return -ENOMEM;
}
for (i = 0; i < priv->num_resets; i++) {
priv->reset[i] = devm_reset_control_get_by_index(dev, i);
if (IS_ERR(priv->reset[i])) {
dev_err(dev, "error getting reset %d\n", i);
return -EINVAL;
}
ret = reset_control_reset(priv->reset[i]);
if (ret) {
dev_err(dev, "error performing reset %d\n", i);
return ret;
}
}
spin_lock_init(&priv->rx_lock);
timer_setup(&priv->rx_timeout, bcm6368_enetsw_refill_rx_timer, 0);
/* register netdevice */
ndev->netdev_ops = &bcm6368_enetsw_ops;
ndev->min_mtu = ETH_ZLEN;
ndev->mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
ndev->max_mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;
netif_napi_add(ndev, &priv->napi, bcm6368_enetsw_poll, 16);
SET_NETDEV_DEV(ndev, dev);
ret = register_netdev(ndev);
if (ret)
goto out_disable_clk;
netif_carrier_off(ndev);
platform_set_drvdata(pdev, ndev);
priv->pdev = pdev;
priv->net_dev = ndev;
return 0;
out_disable_clk:
for (i = 0; i < priv->num_resets; i++)
reset_control_assert(priv->reset[i]);
for (i = 0; i < priv->num_clocks; i++)
clk_disable_unprepare(priv->clock[i]);
return ret;
}
static int bcm6368_enetsw_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct net_device *ndev = platform_get_drvdata(pdev);
struct bcm6368_enetsw *priv = netdev_priv(ndev);
unsigned int i;
unregister_netdev(ndev);
pm_runtime_put_sync(dev);
for (i = 0; priv->pm && i < priv->num_pms; i++) {
dev_pm_domain_detach(priv->pm[i], true);
device_link_del(priv->link_pm[i]);
}
for (i = 0; i < priv->num_resets; i++)
reset_control_assert(priv->reset[i]);
for (i = 0; i < priv->num_clocks; i++)
clk_disable_unprepare(priv->clock[i]);
free_netdev(ndev);
return 0;
}
static const struct of_device_id bcm6368_enetsw_of_match[] = {
{ .compatible = "brcm,bcm6318-enetsw", },
{ .compatible = "brcm,bcm6328-enetsw", },
{ .compatible = "brcm,bcm6362-enetsw", },
{ .compatible = "brcm,bcm6368-enetsw", },
{ .compatible = "brcm,bcm63268-enetsw", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, bcm6368_enetsw_of_match);
static struct platform_driver bcm6368_enetsw_driver = {
.driver = {
.name = "bcm6368-enetsw",
.of_match_table = of_match_ptr(bcm6368_enetsw_of_match),
},
.probe = bcm6368_enetsw_probe,
.remove = bcm6368_enetsw_remove,
};
module_platform_driver(bcm6368_enetsw_driver);