difos/target/linux/realtek/files-5.10/drivers/net/dsa/rtl83xx/common.c
INAGAKI Hiroshi 95170b4350 realtek: copy config/files/patches to 5.10
this patch copies the following files from 5.4 to 5.10:

- config-5.4   -> config-5.10
- files-5.4/   -> files-5.10/
- patches-5.4/ -> patches-5.10/

Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[rebase on change in files-5.4]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-09-26 00:32:17 +02:00

722 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/of_mdio.h>
#include <linux/of_platform.h>
#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include "rtl83xx.h"
extern struct rtl83xx_soc_info soc_info;
extern const struct rtl838x_reg rtl838x_reg;
extern const struct rtl838x_reg rtl839x_reg;
extern const struct rtl838x_reg rtl930x_reg;
extern const struct rtl838x_reg rtl931x_reg;
extern const struct dsa_switch_ops rtl83xx_switch_ops;
extern const struct dsa_switch_ops rtl930x_switch_ops;
DEFINE_MUTEX(smi_lock);
int rtl83xx_port_get_stp_state(struct rtl838x_switch_priv *priv, int port)
{
u32 msti = 0;
u32 port_state[4];
int index, bit;
int pos = port;
int n = priv->port_width << 1;
/* Ports above or equal CPU port can never be configured */
if (port >= priv->cpu_port)
return -1;
mutex_lock(&priv->reg_mutex);
/* For the RTL839x and following, the bits are left-aligned in the 64/128 bit field */
if (priv->family_id == RTL8390_FAMILY_ID)
pos += 12;
if (priv->family_id == RTL9300_FAMILY_ID)
pos += 3;
if (priv->family_id == RTL9310_FAMILY_ID)
pos += 8;
index = n - (pos >> 4) - 1;
bit = (pos << 1) % 32;
priv->r->stp_get(priv, msti, port_state);
mutex_unlock(&priv->reg_mutex);
return (port_state[index] >> bit) & 3;
}
static struct table_reg rtl838x_tbl_regs[] = {
TBL_DESC(0x6900, 0x6908, 3, 15, 13, 1), // RTL8380_TBL_L2
TBL_DESC(0x6914, 0x6918, 18, 14, 12, 1), // RTL8380_TBL_0
TBL_DESC(0xA4C8, 0xA4CC, 6, 14, 12, 1), // RTL8380_TBL_1
TBL_DESC(0x1180, 0x1184, 3, 16, 14, 0), // RTL8390_TBL_L2
TBL_DESC(0x1190, 0x1194, 17, 15, 12, 0), // RTL8390_TBL_0
TBL_DESC(0x6B80, 0x6B84, 4, 14, 12, 0), // RTL8390_TBL_1
TBL_DESC(0x611C, 0x6120, 9, 8, 6, 0), // RTL8390_TBL_2
TBL_DESC(0xB320, 0xB334, 3, 18, 16, 0), // RTL9300_TBL_L2
TBL_DESC(0xB340, 0xB344, 19, 16, 12, 0), // RTL9300_TBL_0
TBL_DESC(0xB3A0, 0xB3A4, 20, 16, 13, 0), // RTL9300_TBL_1
TBL_DESC(0xCE04, 0xCE08, 6, 14, 12, 0), // RTL9300_TBL_2
TBL_DESC(0xD600, 0xD604, 30, 7, 6, 0), // RTL9300_TBL_HSB
TBL_DESC(0x7880, 0x7884, 22, 9, 8, 0), // RTL9300_TBL_HSA
TBL_DESC(0x8500, 0x8508, 8, 19, 15, 0), // RTL9310_TBL_0
TBL_DESC(0x40C0, 0x40C4, 22, 16, 14, 0), // RTL9310_TBL_1
TBL_DESC(0x8528, 0x852C, 6, 18, 14, 0), // RTL9310_TBL_2
TBL_DESC(0x0200, 0x0204, 9, 15, 12, 0), // RTL9310_TBL_3
TBL_DESC(0x20dc, 0x20e0, 29, 7, 6, 0), // RTL9310_TBL_4
TBL_DESC(0x7e1c, 0x7e20, 53, 8, 6, 0), // RTL9310_TBL_5
};
void rtl_table_init(void)
{
int i;
for (i = 0; i < RTL_TBL_END; i++)
mutex_init(&rtl838x_tbl_regs[i].lock);
}
/*
* Request access to table t in table access register r
* Returns a handle to a lock for that table
*/
struct table_reg *rtl_table_get(rtl838x_tbl_reg_t r, int t)
{
if (r >= RTL_TBL_END)
return NULL;
if (t >= BIT(rtl838x_tbl_regs[r].c_bit-rtl838x_tbl_regs[r].t_bit))
return NULL;
mutex_lock(&rtl838x_tbl_regs[r].lock);
rtl838x_tbl_regs[r].tbl = t;
return &rtl838x_tbl_regs[r];
}
/*
* Release a table r, unlock the corresponding lock
*/
void rtl_table_release(struct table_reg *r)
{
if (!r)
return;
// pr_info("Unlocking %08x\n", (u32)r);
mutex_unlock(&r->lock);
// pr_info("Unlock done\n");
}
/*
* Reads table index idx into the data registers of the table
*/
void rtl_table_read(struct table_reg *r, int idx)
{
u32 cmd = r->rmode ? BIT(r->c_bit) : 0;
cmd |= BIT(r->c_bit + 1) | (r->tbl << r->t_bit) | (idx & (BIT(r->t_bit) - 1));
sw_w32(cmd, r->addr);
do { } while (sw_r32(r->addr) & BIT(r->c_bit + 1));
}
/*
* Writes the content of the table data registers into the table at index idx
*/
void rtl_table_write(struct table_reg *r, int idx)
{
u32 cmd = r->rmode ? 0 : BIT(r->c_bit);
cmd |= BIT(r->c_bit + 1) | (r->tbl << r->t_bit) | (idx & (BIT(r->t_bit) - 1));
sw_w32(cmd, r->addr);
do { } while (sw_r32(r->addr) & BIT(r->c_bit + 1));
}
/*
* Returns the address of the ith data register of table register r
* the address is relative to the beginning of the Switch-IO block at 0xbb000000
*/
inline u16 rtl_table_data(struct table_reg *r, int i)
{
if (i >= r->max_data)
i = r->max_data - 1;
return r->data + i * 4;
}
inline u32 rtl_table_data_r(struct table_reg *r, int i)
{
return sw_r32(rtl_table_data(r, i));
}
inline void rtl_table_data_w(struct table_reg *r, u32 v, int i)
{
sw_w32(v, rtl_table_data(r, i));
}
/* Port register accessor functions for the RTL838x and RTL930X SoCs */
void rtl838x_mask_port_reg(u64 clear, u64 set, int reg)
{
sw_w32_mask((u32)clear, (u32)set, reg);
}
void rtl838x_set_port_reg(u64 set, int reg)
{
sw_w32((u32)set, reg);
}
u64 rtl838x_get_port_reg(int reg)
{
return ((u64) sw_r32(reg));
}
/* Port register accessor functions for the RTL839x and RTL931X SoCs */
void rtl839x_mask_port_reg_be(u64 clear, u64 set, int reg)
{
sw_w32_mask((u32)(clear >> 32), (u32)(set >> 32), reg);
sw_w32_mask((u32)(clear & 0xffffffff), (u32)(set & 0xffffffff), reg + 4);
}
u64 rtl839x_get_port_reg_be(int reg)
{
u64 v = sw_r32(reg);
v <<= 32;
v |= sw_r32(reg + 4);
return v;
}
void rtl839x_set_port_reg_be(u64 set, int reg)
{
sw_w32(set >> 32, reg);
sw_w32(set & 0xffffffff, reg + 4);
}
void rtl839x_mask_port_reg_le(u64 clear, u64 set, int reg)
{
sw_w32_mask((u32)clear, (u32)set, reg);
sw_w32_mask((u32)(clear >> 32), (u32)(set >> 32), reg + 4);
}
void rtl839x_set_port_reg_le(u64 set, int reg)
{
sw_w32(set, reg);
sw_w32(set >> 32, reg + 4);
}
u64 rtl839x_get_port_reg_le(int reg)
{
u64 v = sw_r32(reg + 4);
v <<= 32;
v |= sw_r32(reg);
return v;
}
int read_phy(u32 port, u32 page, u32 reg, u32 *val)
{
switch (soc_info.family) {
case RTL8380_FAMILY_ID:
return rtl838x_read_phy(port, page, reg, val);
case RTL8390_FAMILY_ID:
return rtl839x_read_phy(port, page, reg, val);
case RTL9300_FAMILY_ID:
return rtl930x_read_phy(port, page, reg, val);
case RTL9310_FAMILY_ID:
return rtl931x_read_phy(port, page, reg, val);
}
return -1;
}
int write_phy(u32 port, u32 page, u32 reg, u32 val)
{
switch (soc_info.family) {
case RTL8380_FAMILY_ID:
return rtl838x_write_phy(port, page, reg, val);
case RTL8390_FAMILY_ID:
return rtl839x_write_phy(port, page, reg, val);
case RTL9300_FAMILY_ID:
return rtl930x_write_phy(port, page, reg, val);
case RTL9310_FAMILY_ID:
return rtl931x_write_phy(port, page, reg, val);
}
return -1;
}
static int __init rtl83xx_mdio_probe(struct rtl838x_switch_priv *priv)
{
struct device *dev = priv->dev;
struct device_node *dn, *mii_np = dev->of_node;
struct mii_bus *bus;
int ret;
u32 pn;
pr_debug("In %s\n", __func__);
mii_np = of_find_compatible_node(NULL, NULL, "realtek,rtl838x-mdio");
if (mii_np) {
pr_debug("Found compatible MDIO node!\n");
} else {
dev_err(priv->dev, "no %s child node found", "mdio-bus");
return -ENODEV;
}
priv->mii_bus = of_mdio_find_bus(mii_np);
if (!priv->mii_bus) {
pr_debug("Deferring probe of mdio bus\n");
return -EPROBE_DEFER;
}
if (!of_device_is_available(mii_np))
ret = -ENODEV;
bus = devm_mdiobus_alloc(priv->ds->dev);
if (!bus)
return -ENOMEM;
bus->name = "rtl838x slave mii";
/*
* Since the NIC driver is loaded first, we can use the mdio rw functions
* assigned there.
*/
bus->read = priv->mii_bus->read;
bus->write = priv->mii_bus->write;
snprintf(bus->id, MII_BUS_ID_SIZE, "%s-%d", bus->name, dev->id);
bus->parent = dev;
priv->ds->slave_mii_bus = bus;
priv->ds->slave_mii_bus->priv = priv;
ret = mdiobus_register(priv->ds->slave_mii_bus);
if (ret && mii_np) {
of_node_put(dn);
return ret;
}
dn = mii_np;
for_each_node_by_name(dn, "ethernet-phy") {
if (of_property_read_u32(dn, "reg", &pn))
continue;
priv->ports[pn].dp = dsa_to_port(priv->ds, pn);
// Check for the integrated SerDes of the RTL8380M first
if (of_property_read_bool(dn, "phy-is-integrated")
&& priv->id == 0x8380 && pn >= 24) {
pr_debug("----> FÓUND A SERDES\n");
priv->ports[pn].phy = PHY_RTL838X_SDS;
continue;
}
if (of_property_read_bool(dn, "phy-is-integrated")
&& !of_property_read_bool(dn, "sfp")) {
priv->ports[pn].phy = PHY_RTL8218B_INT;
continue;
}
if (!of_property_read_bool(dn, "phy-is-integrated")
&& of_property_read_bool(dn, "sfp")) {
priv->ports[pn].phy = PHY_RTL8214FC;
continue;
}
if (!of_property_read_bool(dn, "phy-is-integrated")
&& !of_property_read_bool(dn, "sfp")) {
priv->ports[pn].phy = PHY_RTL8218B_EXT;
continue;
}
}
// TODO: Do this needs to come from the .dts, at least the SerDes number
if (priv->family_id == RTL9300_FAMILY_ID) {
priv->ports[24].is2G5 = true;
priv->ports[25].is2G5 = true;
priv->ports[24].sds_num = 1;
priv->ports[24].sds_num = 2;
}
/* Disable MAC polling the PHY so that we can start configuration */
priv->r->set_port_reg_le(0ULL, priv->r->smi_poll_ctrl);
/* Enable PHY control via SoC */
if (priv->family_id == RTL8380_FAMILY_ID) {
/* Enable SerDes NWAY and PHY control via SoC */
sw_w32_mask(BIT(7), BIT(15), RTL838X_SMI_GLB_CTRL);
} else {
/* Disable PHY polling via SoC */
sw_w32_mask(BIT(7), 0, RTL839X_SMI_GLB_CTRL);
}
/* Power on fibre ports and reset them if necessary */
if (priv->ports[24].phy == PHY_RTL838X_SDS) {
pr_debug("Powering on fibre ports & reset\n");
rtl8380_sds_power(24, 1);
rtl8380_sds_power(26, 1);
}
// TODO: Only power on SerDes with external PHYs connected
if (priv->family_id == RTL9300_FAMILY_ID) {
pr_info("RTL9300 Powering on SerDes ports\n");
rtl9300_sds_power(24, 1);
rtl9300_sds_power(25, 1);
rtl9300_sds_power(26, 1);
rtl9300_sds_power(27, 1);
}
pr_debug("%s done\n", __func__);
return 0;
}
static int __init rtl83xx_get_l2aging(struct rtl838x_switch_priv *priv)
{
int t = sw_r32(priv->r->l2_ctrl_1);
t &= priv->family_id == RTL8380_FAMILY_ID ? 0x7fffff : 0x1FFFFF;
if (priv->family_id == RTL8380_FAMILY_ID)
t = t * 128 / 625; /* Aging time in seconds. 0: L2 aging disabled */
else
t = (t * 3) / 5;
pr_debug("L2 AGING time: %d sec\n", t);
pr_debug("Dynamic aging for ports: %x\n", sw_r32(priv->r->l2_port_aging_out));
return t;
}
/* Caller must hold priv->reg_mutex */
int rtl83xx_lag_add(struct dsa_switch *ds, int group, int port)
{
struct rtl838x_switch_priv *priv = ds->priv;
int i;
pr_info("%s: Adding port %d to LA-group %d\n", __func__, port, group);
if (group >= priv->n_lags) {
pr_err("Link Agrregation group too large.\n");
return -EINVAL;
}
if (port >= priv->cpu_port) {
pr_err("Invalid port number.\n");
return -EINVAL;
}
for (i = 0; i < priv->n_lags; i++) {
if (priv->lags_port_members[i] & BIT_ULL(i))
break;
}
if (i != priv->n_lags) {
pr_err("%s: Port already member of LAG: %d\n", __func__, i);
return -ENOSPC;
}
priv->r->mask_port_reg_be(0, BIT_ULL(port), priv->r->trk_mbr_ctr(group));
priv->lags_port_members[group] |= BIT_ULL(port);
pr_info("lags_port_members %d now %016llx\n", group, priv->lags_port_members[group]);
return 0;
}
/* Caller must hold priv->reg_mutex */
int rtl83xx_lag_del(struct dsa_switch *ds, int group, int port)
{
struct rtl838x_switch_priv *priv = ds->priv;
pr_info("%s: Removing port %d from LA-group %d\n", __func__, port, group);
if (group >= priv->n_lags) {
pr_err("Link Agrregation group too large.\n");
return -EINVAL;
}
if (port >= priv->cpu_port) {
pr_err("Invalid port number.\n");
return -EINVAL;
}
if (!(priv->lags_port_members[group] & BIT_ULL(port))) {
pr_err("%s: Port not member of LAG: %d\n", __func__, group
);
return -ENOSPC;
}
priv->r->mask_port_reg_be(BIT_ULL(port), 0, priv->r->trk_mbr_ctr(group));
priv->lags_port_members[group] &= ~BIT_ULL(port);
pr_info("lags_port_members %d now %016llx\n", group, priv->lags_port_members[group]);
return 0;
}
static int rtl83xx_handle_changeupper(struct rtl838x_switch_priv *priv,
struct net_device *ndev,
struct netdev_notifier_changeupper_info *info)
{
struct net_device *upper = info->upper_dev;
int i, j, err;
if (!netif_is_lag_master(upper))
return 0;
mutex_lock(&priv->reg_mutex);
for (i = 0; i < priv->n_lags; i++) {
if ((!priv->lag_devs[i]) || (priv->lag_devs[i] == upper))
break;
}
for (j = 0; j < priv->cpu_port; j++) {
if (priv->ports[j].dp->slave == ndev)
break;
}
if (j >= priv->cpu_port) {
err = -EINVAL;
goto out;
}
if (info->linking) {
if (!priv->lag_devs[i])
priv->lag_devs[i] = upper;
err = rtl83xx_lag_add(priv->ds, i, priv->ports[j].dp->index);
if (err) {
err = -EINVAL;
goto out;
}
} else {
if (!priv->lag_devs[i])
err = -EINVAL;
err = rtl83xx_lag_del(priv->ds, i, priv->ports[j].dp->index);
if (err) {
err = -EINVAL;
goto out;
}
if (!priv->lags_port_members[i])
priv->lag_devs[i] = NULL;
}
out:
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int rtl83xx_netdevice_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
struct rtl838x_switch_priv *priv;
int err;
pr_debug("In: %s, event: %lu\n", __func__, event);
if ((event != NETDEV_CHANGEUPPER) && (event != NETDEV_CHANGELOWERSTATE))
return NOTIFY_DONE;
priv = container_of(this, struct rtl838x_switch_priv, nb);
switch (event) {
case NETDEV_CHANGEUPPER:
err = rtl83xx_handle_changeupper(priv, ndev, ptr);
break;
}
if (err)
return err;
return NOTIFY_DONE;
}
static int __init rtl83xx_sw_probe(struct platform_device *pdev)
{
int err = 0, i;
struct rtl838x_switch_priv *priv;
struct device *dev = &pdev->dev;
u64 bpdu_mask;
pr_debug("Probing RTL838X switch device\n");
if (!pdev->dev.of_node) {
dev_err(dev, "No DT found\n");
return -EINVAL;
}
// Initialize access to RTL switch tables
rtl_table_init();
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->ds = dsa_switch_alloc(dev, DSA_MAX_PORTS);
if (!priv->ds)
return -ENOMEM;
priv->ds->dev = dev;
priv->ds->priv = priv;
priv->ds->ops = &rtl83xx_switch_ops;
priv->dev = dev;
priv->family_id = soc_info.family;
priv->id = soc_info.id;
switch(soc_info.family) {
case RTL8380_FAMILY_ID:
priv->ds->ops = &rtl83xx_switch_ops;
priv->cpu_port = RTL838X_CPU_PORT;
priv->port_mask = 0x1f;
priv->port_width = 1;
priv->irq_mask = 0x0FFFFFFF;
priv->r = &rtl838x_reg;
priv->ds->num_ports = 29;
priv->fib_entries = 8192;
rtl8380_get_version(priv);
priv->n_lags = 8;
priv->l2_bucket_size = 4;
break;
case RTL8390_FAMILY_ID:
priv->ds->ops = &rtl83xx_switch_ops;
priv->cpu_port = RTL839X_CPU_PORT;
priv->port_mask = 0x3f;
priv->port_width = 2;
priv->irq_mask = 0xFFFFFFFFFFFFFULL;
priv->r = &rtl839x_reg;
priv->ds->num_ports = 53;
priv->fib_entries = 16384;
rtl8390_get_version(priv);
priv->n_lags = 16;
priv->l2_bucket_size = 4;
break;
case RTL9300_FAMILY_ID:
priv->ds->ops = &rtl930x_switch_ops;
priv->cpu_port = RTL930X_CPU_PORT;
priv->port_mask = 0x1f;
priv->port_width = 1;
priv->irq_mask = 0x0FFFFFFF;
priv->r = &rtl930x_reg;
priv->ds->num_ports = 29;
priv->fib_entries = 16384;
priv->version = RTL8390_VERSION_A;
priv->n_lags = 16;
sw_w32(1, RTL930X_ST_CTRL);
priv->l2_bucket_size = 8;
break;
case RTL9310_FAMILY_ID:
priv->ds->ops = &rtl930x_switch_ops;
priv->cpu_port = RTL931X_CPU_PORT;
priv->port_mask = 0x3f;
priv->port_width = 2;
priv->irq_mask = 0xFFFFFFFFFFFFFULL;
priv->r = &rtl931x_reg;
priv->ds->num_ports = 57;
priv->fib_entries = 16384;
priv->version = RTL8390_VERSION_A;
priv->n_lags = 16;
priv->l2_bucket_size = 8;
break;
}
pr_debug("Chip version %c\n", priv->version);
err = rtl83xx_mdio_probe(priv);
if (err) {
/* Probing fails the 1st time because of missing ethernet driver
* initialization. Use this to disable traffic in case the bootloader left if on
*/
return err;
}
err = dsa_register_switch(priv->ds);
if (err) {
dev_err(dev, "Error registering switch: %d\n", err);
return err;
}
/* Enable link and media change interrupts. Are the SERDES masks needed? */
sw_w32_mask(0, 3, priv->r->isr_glb_src);
priv->r->set_port_reg_le(priv->irq_mask, priv->r->isr_port_link_sts_chg);
priv->r->set_port_reg_le(priv->irq_mask, priv->r->imr_port_link_sts_chg);
priv->link_state_irq = platform_get_irq(pdev, 0);
pr_info("LINK state irq: %d\n", priv->link_state_irq);
switch (priv->family_id) {
case RTL8380_FAMILY_ID:
err = request_irq(priv->link_state_irq, rtl838x_switch_irq,
IRQF_SHARED, "rtl838x-link-state", priv->ds);
break;
case RTL8390_FAMILY_ID:
err = request_irq(priv->link_state_irq, rtl839x_switch_irq,
IRQF_SHARED, "rtl839x-link-state", priv->ds);
break;
case RTL9300_FAMILY_ID:
err = request_irq(priv->link_state_irq, rtl930x_switch_irq,
IRQF_SHARED, "rtl930x-link-state", priv->ds);
break;
case RTL9310_FAMILY_ID:
err = request_irq(priv->link_state_irq, rtl931x_switch_irq,
IRQF_SHARED, "rtl931x-link-state", priv->ds);
break;
}
if (err) {
dev_err(dev, "Error setting up switch interrupt.\n");
/* Need to free allocated switch here */
}
/* Enable interrupts for switch, on RTL931x, the IRQ is always on globally */
if (soc_info.family != RTL9310_FAMILY_ID)
sw_w32(0x1, priv->r->imr_glb);
rtl83xx_get_l2aging(priv);
rtl83xx_setup_qos(priv);
/* Clear all destination ports for mirror groups */
for (i = 0; i < 4; i++)
priv->mirror_group_ports[i] = -1;
priv->nb.notifier_call = rtl83xx_netdevice_event;
if (register_netdevice_notifier(&priv->nb)) {
priv->nb.notifier_call = NULL;
dev_err(dev, "Failed to register LAG netdev notifier\n");
}
// Flood BPDUs to all ports including cpu-port
if (soc_info.family != RTL9300_FAMILY_ID) { // TODO: Port this functionality
bpdu_mask = soc_info.family == RTL8380_FAMILY_ID ? 0x1FFFFFFF : 0x1FFFFFFFFFFFFF;
priv->r->set_port_reg_be(bpdu_mask, priv->r->rma_bpdu_fld_pmask);
// TRAP 802.1X frames (EAPOL) to the CPU-Port, bypass STP and VLANs
sw_w32(7, priv->r->spcl_trap_eapol_ctrl);
rtl838x_dbgfs_init(priv);
}
return err;
}
static int rtl83xx_sw_remove(struct platform_device *pdev)
{
// TODO:
pr_debug("Removing platform driver for rtl83xx-sw\n");
return 0;
}
static const struct of_device_id rtl83xx_switch_of_ids[] = {
{ .compatible = "realtek,rtl83xx-switch"},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rtl83xx_switch_of_ids);
static struct platform_driver rtl83xx_switch_driver = {
.probe = rtl83xx_sw_probe,
.remove = rtl83xx_sw_remove,
.driver = {
.name = "rtl83xx-switch",
.pm = NULL,
.of_match_table = rtl83xx_switch_of_ids,
},
};
module_platform_driver(rtl83xx_switch_driver);
MODULE_AUTHOR("B. Koblitz");
MODULE_DESCRIPTION("RTL83XX SoC Switch Driver");
MODULE_LICENSE("GPL");