difos/target/linux/rtl838x/files-5.4/drivers/net/ethernet/rtl838x_eth.c
Birger Koblitz df8e6be59a rtl838x: add new architecture
This adds support for the RTL838x Architecture.
SoCs of this type are used in managed and un-managed Switches and Routers
with 8-28 ports. Drivers are provided for SoC initialization, GPIOs, Flash,
Ethernet including a DSA switch driver and internal and external PHYs used
with these switches.

Supported SoCs:

	RTL8380M
	RTL8381M
	RTL8382M

The kernel will also boot on the following RTL839x SoCs, however driver
support apart from spi-nor is missing:

	RTL8390
	RTL8391
	RTL8393

The following PHYs are supported:

	RTL8214FC (Quad QSGMII multiplexing GMAC and SFP port)
	RTL8218B internal: internal PHY of the RTL838x chips
	RTL8318b external (QSGMII 8-port GMAC phy)
	RTL8382M SerDes for 2 SFP ports
	Initialization sequences for the PHYs are provided in the form of
	firmware files.

Flash driver supports 3 / 4 byte access

DSA switch driver supports VLANs, port isolation, STP and port mirroring.

The ALLNET ALL-SG8208M is supported as Proof of Concept:

	RTL8382M SoC
	1 MIPS 4KEc core @ 500MHz
	8 Internal PHYs (RTL8218B)
	128MB DRAM (Nanya NT5TU128MB)
	16MB NOR Flash (MXIC 25L128)
	8 GBEthernet ports with one green status LED each (SoC controlled)
	1 Power LED (not configurable)
	1 SYS LED (configurable)
	1 On-Off switch (not configurable)
	1 Reset button at the right behind right air-vent (not configurable)
	1 Reset button on front panel (configurable)
	12V 1A barrel connector
	1 serial header with populated standard pin connector and with markings
	  GND TX RX Vcc(3.3V), connection properties: 115200 8N1

To install, upload the sysupgrade image to the OEM webpage.

Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
2020-09-14 07:54:30 +02:00

1205 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/net/ethernet/rtl838x_eth.c
* Copyright (C) 2020 B. Koblitz
*/
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <linux/module.h>
#include <linux/phylink.h>
#include <net/dsa.h>
#include <asm/mach-rtl838x/mach-rtl838x.h>
#include "rtl838x_eth.h"
extern struct rtl838x_soc_info soc_info;
/*
* Maximum number of RX rings is 8, assigned by switch based on
* packet/port priortity (not implemented)
* Maximum number of TX rings is 2 (only ring 0 used)
* RX ringlength needs to be at least 200, otherwise CPU and Switch
* may gridlock.
*/
#define RXRINGS 2
#define RXRINGLEN 300
#define TXRINGS 2
#define TXRINGLEN 160
#define TX_EN 0x8
#define RX_EN 0x4
#define TX_DO 0x2
#define WRAP 0x2
#define RING_BUFFER 1600
struct p_hdr {
uint8_t *buf;
uint16_t reserved;
uint16_t size; /* buffer size */
uint16_t offset;
uint16_t len; /* pkt len */
uint16_t reserved2;
uint16_t cpu_tag[5];
} __packed __aligned(1);
struct ring_b {
uint32_t rx_r[RXRINGS][RXRINGLEN];
uint32_t tx_r[TXRINGS][TXRINGLEN];
struct p_hdr rx_header[RXRINGS][RXRINGLEN];
struct p_hdr tx_header[TXRINGS][TXRINGLEN];
uint32_t c_rx[RXRINGS];
uint32_t c_tx[TXRINGS];
uint8_t rx_space[RXRINGS*RXRINGLEN*RING_BUFFER];
uint8_t tx_space[TXRINGLEN*RING_BUFFER];
};
struct rtl838x_eth_priv {
struct net_device *netdev;
struct platform_device *pdev;
void *membase;
spinlock_t lock;
struct mii_bus *mii_bus;
struct napi_struct napi;
struct phylink *phylink;
struct phylink_config phylink_config;
u16 id;
u16 family_id;
const struct rtl838x_reg *r;
u8 cpu_port;
};
static const struct rtl838x_reg rtl838x_reg = {
.mac_port_ctrl = rtl838x_mac_port_ctrl,
.dma_if_intr_sts = RTL838X_DMA_IF_INTR_STS,
.dma_if_intr_msk = RTL838X_DMA_IF_INTR_MSK,
.dma_if_ctrl = RTL838X_DMA_IF_CTRL,
.mac_force_mode_ctrl = rtl838x_mac_force_mode_ctrl,
.dma_rx_base = rtl838x_dma_rx_base,
.dma_tx_base = rtl838x_dma_tx_base,
.dma_if_rx_ring_size = rtl838x_dma_if_rx_ring_size,
.dma_if_rx_ring_cntr = rtl838x_dma_if_rx_ring_cntr,
.dma_if_rx_cur = rtl838x_dma_if_rx_cur,
.rst_glb_ctrl = RTL838X_RST_GLB_CTRL_0,
.get_mac_link_sts = rtl838x_get_mac_link_sts,
.get_mac_link_dup_sts = rtl838x_get_mac_link_dup_sts,
.get_mac_link_spd_sts = rtl838x_get_mac_link_spd_sts,
.get_mac_rx_pause_sts = rtl838x_get_mac_rx_pause_sts,
.get_mac_tx_pause_sts = rtl838x_get_mac_tx_pause_sts,
.mac = RTL838X_MAC,
.l2_tbl_flush_ctrl = RTL838X_L2_TBL_FLUSH_CTRL,
};
static const struct rtl838x_reg rtl839x_reg = {
.mac_port_ctrl = rtl839x_mac_port_ctrl,
.dma_if_intr_sts = RTL839X_DMA_IF_INTR_STS,
.dma_if_intr_msk = RTL839X_DMA_IF_INTR_MSK,
.dma_if_ctrl = RTL839X_DMA_IF_CTRL,
.mac_force_mode_ctrl = rtl839x_mac_force_mode_ctrl,
.dma_rx_base = rtl839x_dma_rx_base,
.dma_tx_base = rtl839x_dma_tx_base,
.dma_if_rx_ring_size = rtl839x_dma_if_rx_ring_size,
.dma_if_rx_ring_cntr = rtl839x_dma_if_rx_ring_cntr,
.dma_if_rx_cur = rtl839x_dma_if_rx_cur,
.rst_glb_ctrl = RTL839X_RST_GLB_CTRL,
.get_mac_link_sts = rtl839x_get_mac_link_sts,
.get_mac_link_dup_sts = rtl839x_get_mac_link_dup_sts,
.get_mac_link_spd_sts = rtl839x_get_mac_link_spd_sts,
.get_mac_rx_pause_sts = rtl839x_get_mac_rx_pause_sts,
.get_mac_tx_pause_sts = rtl839x_get_mac_tx_pause_sts,
.mac = RTL839X_MAC,
.l2_tbl_flush_ctrl = RTL839X_L2_TBL_FLUSH_CTRL,
};
/*
* Discard the RX ring-buffers, called as part of the net-ISR
* when the buffer runs over
* Caller needs to hold priv->lock
*/
static void rtl838x_rb_cleanup(struct rtl838x_eth_priv *priv)
{
int r;
u32 *last;
struct p_hdr *h;
struct ring_b *ring = priv->membase;
for (r = 0; r < RXRINGS; r++) {
last = (u32 *)KSEG1ADDR(sw_r32(priv->r->dma_if_rx_cur(r)));
do {
if ((ring->rx_r[r][ring->c_rx[r]] & 0x1))
break;
h = &ring->rx_header[r][ring->c_rx[r]];
h->buf = (u8 *)CPHYSADDR(ring->rx_space
+ r * ring->c_rx[r] * RING_BUFFER);
h->size = RING_BUFFER;
h->len = 0;
/* make sure the header is visible to the ASIC */
mb();
ring->rx_r[r][ring->c_rx[r]] = CPHYSADDR(h) | 0x1
| (ring->c_rx[r] == (RXRINGLEN-1) ? WRAP : 0x1);
ring->c_rx[r] = (ring->c_rx[r] + 1) % RXRINGLEN;
} while (&ring->rx_r[r][ring->c_rx[r]] != last);
}
}
static irqreturn_t rtl838x_net_irq(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct rtl838x_eth_priv *priv = netdev_priv(dev);
u32 status = sw_r32(priv->r->dma_if_intr_sts);
spin_lock(&priv->lock);
/* Ignore TX interrupt */
if ((status & 0xf0000)) {
/* Clear ISR */
sw_w32(0x000f0000, priv->r->dma_if_intr_sts);
}
/* RX interrupt */
if (status & 0x0ff00) {
/* Disable RX interrupt */
sw_w32_mask(0xff00, 0, priv->r->dma_if_intr_msk);
sw_w32(0x0000ff00, priv->r->dma_if_intr_sts);
napi_schedule(&priv->napi);
}
/* RX buffer overrun */
if (status & 0x000ff) {
sw_w32(0x000000ff, priv->r->dma_if_intr_sts);
rtl838x_rb_cleanup(priv);
}
spin_unlock(&priv->lock);
return IRQ_HANDLED;
}
static void rtl838x_hw_reset(struct rtl838x_eth_priv *priv)
{
u32 int_saved;
pr_info("RESETTING %x, CPU_PORT %d\n", priv->family_id, priv->cpu_port);
/* Stop TX/RX */
sw_w32(0x0, priv->r->mac_port_ctrl(priv->cpu_port));
mdelay(500);
int_saved = sw_r32(priv->r->dma_if_intr_msk);
/* Reset NIC */
sw_w32(0x08, priv->r->rst_glb_ctrl);
do {
udelay(20);
} while (sw_r32(priv->r->rst_glb_ctrl) & 0x08);
mdelay(100);
/* Restore notification settings: on RTL838x these bits are null */
sw_w32_mask(7 << 20, int_saved & (7 << 20), priv->r->dma_if_intr_msk);
/* Restart TX/RX to CPU port */
sw_w32(0x03, priv->r->mac_port_ctrl(priv->cpu_port));
if (priv->family_id == RTL8380_FAMILY_ID) {
/* Set Speed, duplex, flow control
* FORCE_EN | LINK_EN | NWAY_EN | DUP_SEL
* | SPD_SEL = 0b10 | FORCE_FC_EN | PHY_MASTER_SLV_MANUAL_EN
* | MEDIA_SEL
*/
sw_w32(0x6192F, priv->r->mac_force_mode_ctrl(priv->cpu_port));
/* allow CRC errors on CPU-port */
sw_w32_mask(0, 0x8, priv->r->mac_port_ctrl(priv->cpu_port));
} else {
/* Force CPU port link up */
sw_w32_mask(0, 3, priv->r->mac_force_mode_ctrl(priv->cpu_port));
}
/* Disable and clear interrupts */
sw_w32(0x00000000, priv->r->dma_if_intr_msk);
sw_w32(0xffffffff, priv->r->dma_if_intr_sts);
}
static void rtl838x_hw_ring_setup(struct rtl838x_eth_priv *priv)
{
int i;
struct ring_b *ring = priv->membase;
for (i = 0; i < RXRINGS; i++)
sw_w32(CPHYSADDR(&ring->rx_r[i]), priv->r->dma_rx_base(i));
for (i = 0; i < TXRINGS; i++)
sw_w32(CPHYSADDR(&ring->tx_r[i]), priv->r->dma_tx_base(i));
}
static void rtl838x_hw_en_rxtx(struct rtl838x_eth_priv *priv)
{
u32 v;
pr_info("%s\n", __func__);
/* Disable Head of Line features for all RX rings */
sw_w32(0xffffffff, priv->r->dma_if_rx_ring_size(0));
/* Truncate RX buffer to 0x640 (1600) bytes, pad TX */
sw_w32(0x06400020, priv->r->dma_if_ctrl);
/* Enable RX done, RX overflow and TX done interrupts */
sw_w32(0xfffff, priv->r->dma_if_intr_msk);
/* Enable traffic, engine expects empty FCS field */
sw_w32_mask(0, RX_EN | TX_EN, priv->r->dma_if_ctrl);
/* Make sure to flood all traffic to CPU_PORT */
if (priv->family_id == RTL8390_FAMILY_ID) {
/* CPU port joins Lookup Miss Flooding Portmask */
/* Table access: CMD: read, table = 2 */
/* Sets MC_PMSK table port bit for port 52 to 1 */
sw_w32(0x28000, RTL839X_TBL_ACCESS_L2_CTRL);
do { } while (sw_r32(RTL839X_TBL_ACCESS_L2_CTRL) & (1 << 17));
v = sw_r32(RTL839X_TBL_ACCESS_L2_DATA(0));
sw_w32(v | 0x80000000, RTL839X_TBL_ACCESS_L2_DATA(0));
sw_w32(0x38000, RTL839X_TBL_ACCESS_L2_CTRL);
do { } while (sw_r32(RTL839X_TBL_ACCESS_L2_CTRL) & (1 << 17));
}
}
static void rtl838x_setup_ring_buffer(struct ring_b *ring)
{
int i, j;
struct p_hdr *h;
for (i = 0; i < RXRINGS; i++) {
for (j = 0; j < RXRINGLEN; j++) {
h = &ring->rx_header[i][j];
h->buf = (u8 *)CPHYSADDR(ring->rx_space + i * j * RING_BUFFER);
h->reserved = 0;
h->size = RING_BUFFER;
h->offset = 0;
h->len = 0;
/* All rings owned by switch, last one wraps */
ring->rx_r[i][j] = CPHYSADDR(h) | 1 | (j == (RXRINGLEN - 1) ? WRAP : 0);
}
ring->c_rx[i] = 0;
}
for (i = 0; i < TXRINGS; i++) {
for (j = 0; j < TXRINGLEN; j++) {
h = &ring->tx_header[i][j];
h->buf = (u8 *)CPHYSADDR(ring->tx_space + i * j * RING_BUFFER);
h->reserved = 0;
h->size = RING_BUFFER;
h->offset = 0;
h->len = 0;
ring->tx_r[i][j] = CPHYSADDR(&ring->tx_header[i][j]);
}
/* Last header is wrapping around */
ring->tx_r[i][j-1] |= 2;
ring->c_tx[i] = 0;
}
}
static int rtl838x_eth_open(struct net_device *ndev)
{
unsigned long flags;
struct rtl838x_eth_priv *priv = netdev_priv(ndev);
struct ring_b *ring = priv->membase;
int err;
pr_info("%s called %x, ring %x\n", __func__, (uint32_t)priv, (uint32_t)ring);
spin_lock_irqsave(&priv->lock, flags);
rtl838x_hw_reset(priv);
rtl838x_setup_ring_buffer(ring);
rtl838x_hw_ring_setup(priv);
err = request_irq(ndev->irq, rtl838x_net_irq, IRQF_SHARED,
ndev->name, ndev);
if (err) {
netdev_err(ndev, "%s: could not acquire interrupt: %d\n",
__func__, err);
return err;
}
phylink_start(priv->phylink);
napi_enable(&priv->napi);
netif_start_queue(ndev);
rtl838x_hw_en_rxtx(priv);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static void rtl838x_hw_stop(struct rtl838x_eth_priv *priv)
{
int i;
/* Block all ports */
if (priv->family_id == RTL8380_FAMILY_ID) {
sw_w32(0x03000000, RTL838X_TBL_ACCESS_DATA_0(0));
sw_w32(0x00000000, RTL838X_TBL_ACCESS_DATA_0(1));
sw_w32(1 << 15 | 2 << 12, RTL838X_TBL_ACCESS_CTRL_0);
}
/* Flush L2 address cache */
if (priv->family_id == RTL8380_FAMILY_ID) {
for (i = 0; i <= priv->cpu_port; i++) {
sw_w32(1 << 26 | 1 << 23 | i << 5, priv->r->l2_tbl_flush_ctrl);
do { } while (sw_r32(priv->r->l2_tbl_flush_ctrl) & (1 << 26));
}
} else {
for (i = 0; i <= priv->cpu_port; i++) {
sw_w32(1 << 28 | 1 << 25 | i << 5, priv->r->l2_tbl_flush_ctrl);
do { } while (sw_r32(priv->r->l2_tbl_flush_ctrl) & (1 << 28));
}
}
/* CPU-Port: Link down BUG: Works only for RTL838x */
sw_w32(0x6192D, priv->r->mac_force_mode_ctrl(priv->cpu_port));
mdelay(100);
/* Disable traffic */
sw_w32_mask(RX_EN | TX_EN, 0, priv->r->dma_if_ctrl);
mdelay(200);
/* Disable all TX/RX interrupts */
sw_w32(0x00000000, priv->r->dma_if_intr_msk);
sw_w32(0x000fffff, priv->r->dma_if_intr_sts);
sw_w32(0x00000000, priv->r->dma_if_ctrl);
mdelay(200);
}
static int rtl838x_eth_stop(struct net_device *ndev)
{
unsigned long flags;
struct rtl838x_eth_priv *priv = netdev_priv(ndev);
pr_info("in %s\n", __func__);
spin_lock_irqsave(&priv->lock, flags);
phylink_stop(priv->phylink);
rtl838x_hw_stop(priv);
free_irq(ndev->irq, ndev);
napi_disable(&priv->napi);
netif_stop_queue(ndev);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static void rtl838x_eth_set_multicast_list(struct net_device *dev)
{
}
static void rtl838x_eth_tx_timeout(struct net_device *ndev)
{
unsigned long flags;
struct rtl838x_eth_priv *priv = netdev_priv(ndev);
pr_info("in %s\n", __func__);
spin_lock_irqsave(&priv->lock, flags);
rtl838x_hw_stop(priv);
rtl838x_hw_ring_setup(priv);
rtl838x_hw_en_rxtx(priv);
netif_trans_update(ndev);
netif_start_queue(ndev);
spin_unlock_irqrestore(&priv->lock, flags);
}
static int rtl838x_eth_tx(struct sk_buff *skb, struct net_device *dev)
{
int len, i;
struct rtl838x_eth_priv *priv = netdev_priv(dev);
struct ring_b *ring = priv->membase;
uint32_t val;
int ret;
unsigned long flags;
struct p_hdr *h;
int dest_port = -1;
spin_lock_irqsave(&priv->lock, flags);
len = skb->len;
/* Check for DSA tagging at the end of the buffer */
if (netdev_uses_dsa(dev) && skb->data[len-4] == 0x80 && skb->data[len-3] > 0
&& skb->data[len-3] < 28 && skb->data[len-2] == 0x10
&& skb->data[len-1] == 0x00) {
/* Reuse tag space for CRC */
dest_port = skb->data[len-3];
len -= 4;
}
if (len < ETH_ZLEN)
len = ETH_ZLEN;
/* ASIC expects that packet includes CRC, so we extend by 4 bytes */
len += 4;
if (skb_padto(skb, len)) {
ret = NETDEV_TX_OK;
goto txdone;
}
/* We can send this packet if CPU owns the descriptor */
if (!(ring->tx_r[0][ring->c_tx[0]] & 0x1)) {
/* Set descriptor for tx */
h = &ring->tx_header[0][ring->c_tx[0]];
h->buf = (u8 *)CPHYSADDR(ring->tx_space);
h->size = len;
h->len = len;
/* Create cpu_tag */
if (dest_port > 0) {
h->cpu_tag[0] = 0x0400;
h->cpu_tag[1] = 0x0200;
h->cpu_tag[2] = 0x0000;
h->cpu_tag[3] = (1 << dest_port) >> 16;
h->cpu_tag[4] = (1 << dest_port) & 0xffff;
} else {
h->cpu_tag[0] = 0;
h->cpu_tag[1] = 0;
h->cpu_tag[2] = 0;
h->cpu_tag[3] = 0;
h->cpu_tag[4] = 0;
}
/* Copy packet data to tx buffer */
memcpy((void *)KSEG1ADDR(h->buf), skb->data, len);
/* Make sure packet data is visible to ASIC */
mb();
/* Hand over to switch */
ring->tx_r[0][ring->c_tx[0]] = ring->tx_r[0][ring->c_tx[0]] | 0x1;
/* BUG: before tx fetch, need to make sure right data is accessed */
for (i = 0; i < 10; i++) {
val = sw_r32(priv->r->dma_if_ctrl);
if ((val & 0xc) == 0xc)
break;
}
/* Tell switch to send data */
sw_w32_mask(0, TX_DO, priv->r->dma_if_ctrl);
dev->stats.tx_packets++;
dev->stats.tx_bytes += len;
dev_kfree_skb(skb);
ring->c_tx[0] = (ring->c_tx[0] + 1) % TXRINGLEN;
ret = NETDEV_TX_OK;
} else {
dev_warn(&priv->pdev->dev, "Data is owned by switch\n");
ret = NETDEV_TX_BUSY;
}
txdone:
spin_unlock_irqrestore(&priv->lock, flags);
return ret;
}
static int rtl838x_hw_receive(struct net_device *dev, int r, int budget)
{
struct rtl838x_eth_priv *priv = netdev_priv(dev);
struct ring_b *ring = priv->membase;
struct sk_buff *skb;
unsigned long flags;
int i, len, work_done = 0;
u8 *data, *skb_data;
unsigned int val;
u32 *last;
struct p_hdr *h;
bool dsa = netdev_uses_dsa(dev);
spin_lock_irqsave(&priv->lock, flags);
last = (u32 *)KSEG1ADDR(sw_r32(priv->r->dma_if_rx_cur(r)));
if (&ring->rx_r[r][ring->c_rx[r]] == last) {
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
do {
if ((ring->rx_r[r][ring->c_rx[r]] & 0x1)) {
netdev_warn(dev, "WARNING Ring contention: ring %x, last %x, current %x, cPTR %x, ISR %x\n", r, (uint32_t)last,
(u32) &ring->rx_r[r][ring->c_rx[r]],
ring->rx_r[r][ring->c_rx[r]],
sw_r32(priv->r->dma_if_intr_sts));
break;
}
h = &ring->rx_header[r][ring->c_rx[r]];
data = (u8 *)KSEG1ADDR(h->buf);
len = h->len;
if (!len)
break;
h->buf = (u8 *)CPHYSADDR(ring->rx_space
+ r * ring->c_rx[r] * RING_BUFFER);
h->size = RING_BUFFER;
h->len = 0;
work_done++;
len -= 4; /* strip the CRC */
/* Add 4 bytes for cpu_tag */
if (dsa)
len += 4;
skb = alloc_skb(len + 4, GFP_KERNEL);
skb_reserve(skb, NET_IP_ALIGN);
if (likely(skb)) {
/* BUG: Prevent ASIC bug */
sw_w32(0xffffffff, priv->r->dma_if_rx_ring_size(0));
for (i = 0; i < RXRINGS; i++) {
/* Update each ring cnt */
val = sw_r32(priv->r->dma_if_rx_ring_cntr(i));
sw_w32(val, priv->r->dma_if_rx_ring_cntr(i));
}
skb_data = skb_put(skb, len);
/* Make sure data is visible */
mb();
memcpy(skb->data, (u8 *)KSEG1ADDR(data), len);
/* Overwrite CRC with cpu_tag */
if (dsa) {
skb->data[len-4] = 0x80;
skb->data[len-3] = h->cpu_tag[0] & 0x1f;
skb->data[len-2] = 0x10;
skb->data[len-1] = 0x00;
}
skb->protocol = eth_type_trans(skb, dev);
dev->stats.rx_packets++;
dev->stats.rx_bytes += len;
netif_receive_skb(skb);
} else {
if (net_ratelimit())
dev_warn(&dev->dev, "low on memory - packet dropped\n");
dev->stats.rx_dropped++;
}
ring->rx_r[r][ring->c_rx[r]]
= CPHYSADDR(h) | 0x1 | (ring->c_rx[r] == (RXRINGLEN-1) ? WRAP : 0x1);
ring->c_rx[r] = (ring->c_rx[r] + 1) % RXRINGLEN;
} while (&ring->rx_r[r][ring->c_rx[r]] != last && work_done < budget);
spin_unlock_irqrestore(&priv->lock, flags);
return work_done;
}
static int rtl838x_poll_rx(struct napi_struct *napi, int budget)
{
struct rtl838x_eth_priv *priv = container_of(napi, struct rtl838x_eth_priv, napi);
int work_done = 0, r = 0;
while (work_done < budget && r < RXRINGS) {
work_done += rtl838x_hw_receive(priv->netdev, r, budget - work_done);
r++;
}
if (work_done < budget) {
napi_complete_done(napi, work_done);
/* Enable RX interrupt */
sw_w32(0xfffff, priv->r->dma_if_intr_msk);
}
return work_done;
}
static void rtl838x_validate(struct phylink_config *config,
unsigned long *supported,
struct phylink_link_state *state)
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
pr_info("In %s\n", __func__);
if (!phy_interface_mode_is_rgmii(state->interface) &&
state->interface != PHY_INTERFACE_MODE_1000BASEX &&
state->interface != PHY_INTERFACE_MODE_MII &&
state->interface != PHY_INTERFACE_MODE_REVMII &&
state->interface != PHY_INTERFACE_MODE_GMII &&
state->interface != PHY_INTERFACE_MODE_QSGMII &&
state->interface != PHY_INTERFACE_MODE_INTERNAL &&
state->interface != PHY_INTERFACE_MODE_SGMII) {
bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
pr_err("Unsupported interface: %d\n", state->interface);
return;
}
/* Allow all the expected bits */
phylink_set(mask, Autoneg);
phylink_set_port_modes(mask);
phylink_set(mask, Pause);
phylink_set(mask, Asym_Pause);
/* With the exclusion of MII and Reverse MII, we support Gigabit,
* including Half duplex
*/
if (state->interface != PHY_INTERFACE_MODE_MII &&
state->interface != PHY_INTERFACE_MODE_REVMII) {
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseT_Half);
}
phylink_set(mask, 10baseT_Half);
phylink_set(mask, 10baseT_Full);
phylink_set(mask, 100baseT_Half);
phylink_set(mask, 100baseT_Full);
bitmap_and(supported, supported, mask,
__ETHTOOL_LINK_MODE_MASK_NBITS);
bitmap_and(state->advertising, state->advertising, mask,
__ETHTOOL_LINK_MODE_MASK_NBITS);
}
static void rtl838x_mac_config(struct phylink_config *config,
unsigned int mode,
const struct phylink_link_state *state)
{
/* This is only being called for the master device,
* i.e. the CPU-Port
*/
pr_info("In %s, mode %x\n", __func__, mode);
}
static void rtl838x_mac_an_restart(struct phylink_config *config)
{
struct net_device *dev = container_of(config->dev, struct net_device, dev);
struct rtl838x_eth_priv *priv = netdev_priv(dev);
pr_info("In %s\n", __func__);
/* Restart by disabling and re-enabling link */
sw_w32(0x6192D, priv->r->mac_force_mode_ctrl(priv->cpu_port));
mdelay(20);
sw_w32(0x6192F, priv->r->mac_force_mode_ctrl(priv->cpu_port));
}
static int rtl838x_mac_pcs_get_state(struct phylink_config *config,
struct phylink_link_state *state)
{
u32 speed;
struct net_device *dev = container_of(config->dev, struct net_device, dev);
struct rtl838x_eth_priv *priv = netdev_priv(dev);
int port = priv->cpu_port;
pr_info("In %s\n", __func__);
state->link = priv->r->get_mac_link_sts(port) ? 1 : 0;
state->duplex = priv->r->get_mac_link_dup_sts(port) ? 1 : 0;
speed = priv->r->get_mac_link_spd_sts(port);
switch (speed) {
case 0:
state->speed = SPEED_10;
break;
case 1:
state->speed = SPEED_100;
break;
state->speed = SPEED_1000;
break;
default:
state->speed = SPEED_UNKNOWN;
break;
}
state->pause &= (MLO_PAUSE_RX | MLO_PAUSE_TX);
if (priv->r->get_mac_rx_pause_sts(port))
state->pause |= MLO_PAUSE_RX;
if (priv->r->get_mac_tx_pause_sts(port))
state->pause |= MLO_PAUSE_TX;
return 1;
}
static void dump_mac_conf(struct rtl838x_eth_priv *priv)
{
int p;
for (p = 8; p < 16; p++) {
pr_debug("%d: %x, force %x\n", p, sw_r32(priv->r->mac_port_ctrl(p)),
sw_r32(priv->r->mac_force_mode_ctrl(p))
);
}
pr_debug("CPU: %x, force %x\n", sw_r32(priv->r->mac_port_ctrl(priv->cpu_port)),
sw_r32(priv->r->mac_force_mode_ctrl(priv->cpu_port))
);
}
static void rtl838x_mac_link_down(struct phylink_config *config,
unsigned int mode,
phy_interface_t interface)
{
struct net_device *dev = container_of(config->dev, struct net_device, dev);
struct rtl838x_eth_priv *priv = netdev_priv(dev);
pr_info("In %s\n", __func__);
/* Stop TX/RX to port */
sw_w32_mask(0x03, 0, priv->r->mac_port_ctrl(priv->cpu_port));
}
static void rtl838x_mac_link_up(struct phylink_config *config, unsigned int mode,
phy_interface_t interface,
struct phy_device *phy)
{
struct net_device *dev = container_of(config->dev, struct net_device, dev);
struct rtl838x_eth_priv *priv = netdev_priv(dev);
pr_info("In %s\n", __func__);
/* Restart TX/RX to port */
sw_w32_mask(0, 0x03, priv->r->mac_port_ctrl(priv->cpu_port));
}
static void rtl838x_set_mac_hw(struct net_device *dev, u8 *mac)
{
struct rtl838x_eth_priv *priv = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
pr_info("In %s\n", __func__);
sw_w32((mac[0] << 8) | mac[1], priv->r->mac);
sw_w32((mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5], priv->r->mac + 4);
if (priv->family_id == RTL8380_FAMILY_ID) {
/* 2 more registers, ALE/MAC block */
sw_w32((mac[0] << 8) | mac[1], RTL838X_MAC_ALE);
sw_w32((mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5],
(RTL838X_MAC_ALE + 4));
sw_w32((mac[0] << 8) | mac[1], RTL838X_MAC2);
sw_w32((mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5],
RTL838X_MAC2 + 4);
}
spin_unlock_irqrestore(&priv->lock, flags);
}
static int rtl838x_set_mac_address(struct net_device *dev, void *p)
{
struct rtl838x_eth_priv *priv = netdev_priv(dev);
const struct sockaddr *addr = p;
u8 *mac = (u8 *) (addr->sa_data);
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
rtl838x_set_mac_hw(dev, mac);
pr_info("Using MAC %08x%08x\n", sw_r32(priv->r->mac), sw_r32(priv->r->mac + 4));
return 0;
}
static int rtl8390_init_mac(struct rtl838x_eth_priv *priv)
{
pr_info("Configuring RTL8390 MAC\n");
// from mac_config_init
sw_w32(0x80, RTL839X_MAC_EFUSE_CTRL);
sw_w32(0x4, RTL839X_RST_GLB_CTRL);
sw_w32(0x3c324f40, RTL839X_MAC_GLB_CTRL);
/* Unlimited egress rate */
sw_w32(0x1297b961, RTL839X_SCHED_LB_TICK_TKN_CTRL);
return 0;
}
static int rtl8380_init_mac(struct rtl838x_eth_priv *priv)
{
int i;
if (priv->family_id == 0x8390)
return rtl8390_init_mac(priv);
if (priv->family_id != 0x8380)
return 0;
pr_info("%s\n", __func__);
/* fix timer for EEE */
sw_w32(0x5001411, RTL838X_EEE_TX_TIMER_GIGA_CTRL);
sw_w32(0x5001417, RTL838X_EEE_TX_TIMER_GELITE_CTRL);
/* Init VLAN */
if (priv->id == 0x8382) {
for (i = 0; i <= 28; i++)
sw_w32(0, 0xd57c + i * 0x80);
}
if (priv->id == 0x8380) {
for (i = 8; i <= 28; i++)
sw_w32(0, 0xd57c + i * 0x80);
}
return 0;
}
static int rtl838x_get_link_ksettings(struct net_device *ndev,
struct ethtool_link_ksettings *cmd)
{
struct rtl838x_eth_priv *priv = netdev_priv(ndev);
pr_info("%s called\n", __func__);
return phylink_ethtool_ksettings_get(priv->phylink, cmd);
}
static int rtl838x_set_link_ksettings(struct net_device *ndev,
const struct ethtool_link_ksettings *cmd)
{
struct rtl838x_eth_priv *priv = netdev_priv(ndev);
pr_info("%s called\n", __func__);
return phylink_ethtool_ksettings_set(priv->phylink, cmd);
}
static int rtl838x_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
{
u32 val;
u32 offset = 0;
int err;
struct rtl838x_eth_priv *priv = bus->priv;
if (mii_id >= 24 && mii_id <= 27 && priv->id == 0x8380) {
if (mii_id == 26)
offset = 0x100;
val = sw_r32(MAPLE_SDS4_FIB_REG0r + offset + (regnum << 2)) & 0xffff;
return val;
}
err = rtl838x_read_phy(mii_id, 0, regnum, &val);
if (err)
return err;
return val;
}
static int rtl839x_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
{
u32 val;
int err;
err = rtl839x_read_phy(mii_id, 0, regnum, &val);
if (err)
return err;
return val;
}
static int rtl838x_mdio_write(struct mii_bus *bus, int mii_id,
int regnum, u16 value)
{
u32 offset = 0;
struct rtl838x_eth_priv *priv = bus->priv;
if (mii_id >= 24 && mii_id <= 27 && priv->id == 0x8380) {
if (mii_id == 26)
offset = 0x100;
sw_w32(value, MAPLE_SDS4_FIB_REG0r + offset + (regnum << 2));
return 0;
}
return rtl838x_write_phy(mii_id, 0, regnum, value);
}
static int rtl839x_mdio_write(struct mii_bus *bus, int mii_id,
int regnum, u16 value)
{
return rtl839x_write_phy(mii_id, 0, regnum, value);
}
static int rtl838x_mdio_reset(struct mii_bus *bus)
{
pr_info("%s called\n", __func__);
/* Disable MAC polling the PHY so that we can start configuration */
sw_w32(0x00000000, RTL838X_SMI_POLL_CTRL);
/* Enable PHY control via SoC */
sw_w32_mask(0, 1 << 15, RTL838X_SMI_GLB_CTRL);
return 0;
}
static int rtl839x_mdio_reset(struct mii_bus *bus)
{
pr_info("%s called\n", __func__);
/* Disable MAC polling the PHY so that we can start configuration */
sw_w32(0x00000000, RTL839X_SMI_PORT_POLLING_CTRL);
sw_w32(0x00000000, RTL839X_SMI_PORT_POLLING_CTRL + 4);
/* Disable PHY polling via SoC */
sw_w32_mask(1 << 7, 0, RTL839X_SMI_GLB_CTRL);
return 0;
}
static int rtl838x_mdio_init(struct rtl838x_eth_priv *priv)
{
struct device_node *mii_np;
int ret;
pr_info("%s called\n", __func__);
mii_np = of_get_child_by_name(priv->pdev->dev.of_node, "mdio-bus");
if (!mii_np) {
dev_err(&priv->pdev->dev, "no %s child node found", "mdio-bus");
return -ENODEV;
}
if (!of_device_is_available(mii_np)) {
ret = -ENODEV;
goto err_put_node;
}
priv->mii_bus = devm_mdiobus_alloc(&priv->pdev->dev);
if (!priv->mii_bus) {
ret = -ENOMEM;
goto err_put_node;
}
if (priv->family_id == RTL8380_FAMILY_ID) {
priv->mii_bus->name = "rtl838x-eth-mdio";
priv->mii_bus->read = rtl838x_mdio_read;
priv->mii_bus->write = rtl838x_mdio_write;
priv->mii_bus->reset = rtl838x_mdio_reset;
} else {
priv->mii_bus->name = "rtl839x-eth-mdio";
priv->mii_bus->read = rtl839x_mdio_read;
priv->mii_bus->write = rtl839x_mdio_write;
priv->mii_bus->reset = rtl839x_mdio_reset;
}
priv->mii_bus->priv = priv;
priv->mii_bus->parent = &priv->pdev->dev;
snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%pOFn", mii_np);
ret = of_mdiobus_register(priv->mii_bus, mii_np);
err_put_node:
of_node_put(mii_np);
return ret;
}
static int rtl838x_mdio_remove(struct rtl838x_eth_priv *priv)
{
pr_info("%s called\n", __func__);
if (!priv->mii_bus)
return 0;
mdiobus_unregister(priv->mii_bus);
mdiobus_free(priv->mii_bus);
return 0;
}
static const struct net_device_ops rtl838x_eth_netdev_ops = {
.ndo_open = rtl838x_eth_open,
.ndo_stop = rtl838x_eth_stop,
.ndo_start_xmit = rtl838x_eth_tx,
.ndo_set_mac_address = rtl838x_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_rx_mode = rtl838x_eth_set_multicast_list,
.ndo_tx_timeout = rtl838x_eth_tx_timeout,
};
static const struct phylink_mac_ops rtl838x_phylink_ops = {
.validate = rtl838x_validate,
.mac_link_state = rtl838x_mac_pcs_get_state,
.mac_an_restart = rtl838x_mac_an_restart,
.mac_config = rtl838x_mac_config,
.mac_link_down = rtl838x_mac_link_down,
.mac_link_up = rtl838x_mac_link_up,
};
static const struct ethtool_ops rtl838x_ethtool_ops = {
.get_link_ksettings = rtl838x_get_link_ksettings,
.set_link_ksettings = rtl838x_set_link_ksettings,
};
static int __init rtl838x_eth_probe(struct platform_device *pdev)
{
struct net_device *dev;
struct device_node *dn = pdev->dev.of_node;
struct rtl838x_eth_priv *priv;
struct resource *res, *mem;
const void *mac;
phy_interface_t phy_mode;
struct phylink *phylink;
int err = 0;
pr_info("Probing RTL838X eth device pdev: %x, dev: %x\n",
(u32)pdev, (u32)(&(pdev->dev)));
if (!dn) {
dev_err(&pdev->dev, "No DT found\n");
return -EINVAL;
}
dev = alloc_etherdev(sizeof(struct rtl838x_eth_priv));
if (!dev) {
err = -ENOMEM;
goto err_free;
}
SET_NETDEV_DEV(dev, &pdev->dev);
priv = netdev_priv(dev);
/* obtain buffer memory space */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res) {
mem = devm_request_mem_region(&pdev->dev, res->start,
resource_size(res), res->name);
if (!mem) {
dev_err(&pdev->dev, "cannot request memory space\n");
err = -ENXIO;
goto err_free;
}
dev->mem_start = mem->start;
dev->mem_end = mem->end;
} else {
dev_err(&pdev->dev, "cannot request IO resource\n");
err = -ENXIO;
goto err_free;
}
/* Allocate buffer memory */
priv->membase = dmam_alloc_coherent(&pdev->dev,
sizeof(struct ring_b), (void *)&dev->mem_start,
GFP_KERNEL);
if (!priv->membase) {
dev_err(&pdev->dev, "cannot allocate DMA buffer\n");
err = -ENOMEM;
goto err_free;
}
spin_lock_init(&priv->lock);
/* obtain device IRQ number */
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res) {
dev_err(&pdev->dev, "cannot obtain IRQ, using default 24\n");
dev->irq = 24;
} else {
dev->irq = res->start;
}
dev->ethtool_ops = &rtl838x_ethtool_ops;
priv->id = soc_info.id;
priv->family_id = soc_info.family;
if (priv->id) {
pr_info("Found SoC ID: %4x: %s, family %x\n",
priv->id, soc_info.name, priv->family_id);
} else {
pr_err("Unknown chip id (%04x)\n", priv->id);
return -ENODEV;
}
if (priv->family_id == 0x8390) {
priv->cpu_port = RTL839X_CPU_PORT;
priv->r = &rtl839x_reg;
} else {
priv->cpu_port = RTL838X_CPU_PORT;
priv->r = &rtl838x_reg;
}
rtl8380_init_mac(priv);
/* try to get mac address in the following order:
* 1) from device tree data
* 2) from internal registers set by bootloader
*/
mac = of_get_mac_address(pdev->dev.of_node);
if (!IS_ERR(mac)) {
memcpy(dev->dev_addr, mac, ETH_ALEN);
rtl838x_set_mac_hw(dev, (u8 *)mac);
} else {
dev->dev_addr[0] = (sw_r32(priv->r->mac) >> 8) & 0xff;
dev->dev_addr[1] = sw_r32(priv->r->mac) & 0xff;
dev->dev_addr[2] = (sw_r32(priv->r->mac + 4) >> 24) & 0xff;
dev->dev_addr[3] = (sw_r32(priv->r->mac + 4) >> 16) & 0xff;
dev->dev_addr[4] = (sw_r32(priv->r->mac + 4) >> 8) & 0xff;
dev->dev_addr[5] = sw_r32(priv->r->mac + 4) & 0xff;
}
/* if the address is invalid, use a random value */
if (!is_valid_ether_addr(dev->dev_addr)) {
struct sockaddr sa = { AF_UNSPEC };
netdev_warn(dev, "Invalid MAC address, using random\n");
eth_hw_addr_random(dev);
memcpy(sa.sa_data, dev->dev_addr, ETH_ALEN);
if (rtl838x_set_mac_address(dev, &sa))
netdev_warn(dev, "Failed to set MAC address.\n");
}
pr_info("Using MAC %08x%08x\n", sw_r32(priv->r->mac),
sw_r32(priv->r->mac + 4));
strcpy(dev->name, "eth%d");
dev->netdev_ops = &rtl838x_eth_netdev_ops;
priv->pdev = pdev;
priv->netdev = dev;
err = rtl838x_mdio_init(priv);
if (err)
goto err_free;
err = register_netdev(dev);
if (err)
goto err_free;
netif_napi_add(dev, &priv->napi, rtl838x_poll_rx, 64);
platform_set_drvdata(pdev, dev);
phy_mode = of_get_phy_mode(dn);
if (phy_mode < 0) {
dev_err(&pdev->dev, "incorrect phy-mode\n");
err = -EINVAL;
goto err_free;
}
priv->phylink_config.dev = &dev->dev;
priv->phylink_config.type = PHYLINK_NETDEV;
phylink = phylink_create(&priv->phylink_config, pdev->dev.fwnode,
phy_mode, &rtl838x_phylink_ops);
if (IS_ERR(phylink)) {
err = PTR_ERR(phylink);
goto err_free;
}
priv->phylink = phylink;
return 0;
err_free:
pr_err("Error setting up netdev, freeing it again.\n");
free_netdev(dev);
return err;
}
static int rtl838x_eth_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct rtl838x_eth_priv *priv = netdev_priv(dev);
if (dev) {
pr_info("Removing platform driver for rtl838x-eth\n");
rtl838x_mdio_remove(priv);
rtl838x_hw_stop(priv);
netif_stop_queue(dev);
netif_napi_del(&priv->napi);
unregister_netdev(dev);
free_netdev(dev);
}
return 0;
}
static const struct of_device_id rtl838x_eth_of_ids[] = {
{ .compatible = "realtek,rtl838x-eth"},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rtl838x_eth_of_ids);
static struct platform_driver rtl838x_eth_driver = {
.probe = rtl838x_eth_probe,
.remove = rtl838x_eth_remove,
.driver = {
.name = "rtl838x-eth",
.pm = NULL,
.of_match_table = rtl838x_eth_of_ids,
},
};
module_platform_driver(rtl838x_eth_driver);
MODULE_AUTHOR("B. Koblitz");
MODULE_DESCRIPTION("RTL838X SoC Ethernet Driver");
MODULE_LICENSE("GPL");