difos/target/linux/bmips/files/drivers/net/ethernet/broadcom/bcm6368-enetsw.c
Linus Walleij 3cf1fe5508 bmips: bcm6368-enetsw: Bump max MTU
The safe max frame size for this ethernet switch is 1532 bytes,
excluding the DSA TAG and extra VLAN header, so the maximum
outgoing frame is 1542 bytes.

The available overhead is needed when using the DSA switch with
a cascaded Marvell DSA switch, which is something that exist in
real products, in this case the Inteno XG6846.

Use defines at the top of the size for max MTU so it is clear how
we think about this, add comments.

We need to adjust the RX buffer size to fit the new max frame size,
which is 1542 when the DSA tag (6 bytes) and VLAN header (4 extra
bytes) is added.

We also drop this default MTU:

  #define ENETSW_TAG_SIZE (6 + VLAN_HLEN)
  ndev->mtu = ETH_DATA_LEN + ENETSW_TAG_SIZE;

in favor of just:

  ndev->mtu = ETH_DATA_LEN;

I don't know why the default MTU is trying to second guess the
overhead required by DSA and VLAN but the framework will also
try to bump the MTU for e.g. DSA tags, and the VLAN overhead is
not supposed to be included in the MTU, so this is clearly not
right.

Before this patch (on the lan1 DSA port in this case):
dsa_slave_change_mtu: master->max_mtu = 9724, dev->max_mtu = 10218, DSA overhead = 8
dsa_slave_change_mtu: master = extsw, dev = lan1
dsa_slave_change_mtu: master->max_mtu = 1510, dev->max_mtu = 9724, DSA overhead = 6
dsa_slave_change_mtu: master = eth0, dev = extsw
dsa_slave_change_mtu new_master_mtu 1514 > mtu_limit 1510
mdio_mux-0.1:00: nonfatal error -34 setting MTU to 1500 on port 0

My added debug prints before the nonfatal error: the first switch from the top
is the Marvell switch, the second in the bcm6368-enetsw with its 1510 limit.

After this patch the error is gone.

OpenWrt adds a VLAN to each port so we get VLAN tags on all frames. On this
setup we even have 4 more bytes left after the two DSA tags and VLAN so
we can go all the way up to 1532 as MTU.

Testing the new 1532 MTU:

    eth0             ext1              enp7s0
 .--------.     .-----------.  cable  .------.
 | enetsw | <-> | mv88e6152 | <-----> | host |
 `--------´     `-----------´         `------´

On the router we set the max MTU for test:
ifconfig eth0 mtu 1520
ifconfig br-wan mtu 1520
ifconfig ext1 mtu 1506

An MTU of 1506 on ext1 is a logic consequence of the above setup:
this is the max bytes actually transferred. The framing added will be:

- 18 bytes standard ethernet header
- 4 bytes VLAN header
- 6 bytes DSA tag for enetsw
- 8 bytes DSA tag for mv88e6152

Sum: 1506 + 18 + 4 + 6 + 8 = 1542 which is out max frame size.

Test pinging from host:
ping -s 1478 -M do 192.168.1.220
PING 192.168.1.220 (192.168.1.220) 1478(1506) bytes of data.
1486 bytes from 192.168.1.220: icmp_seq=1 ttl=64 time=0.696 ms
1486 bytes from 192.168.1.220: icmp_seq=2 ttl=64 time=0.615 ms

Test pinging from router:
PING 192.168.1.2 (192.168.1.2): 1478 data bytes
1486 bytes from 192.168.1.2: seq=0 ttl=64 time=0.931 ms
1486 bytes from 192.168.1.2: seq=1 ttl=64 time=0.810 ms

The max IP packet without headers is 1478, the outgoing ICMP packet is
1506 bytes. Then the DSA, VLAN and ethernet overhead is added.

Let us verify the contents of the resulting ethernet frame of 1542 bytes.

Ping packet on router side as viewed with tcpdump:

00:54:51.900869 AF Unknown (1429722180), length 1538:
        0x0000:  3d93 bcae c56b a83d 8874 0300 0004 8100  =....k.=.t......
        0x0010:  0000 dada 0000 c020 0fff 0800 4500 05e2  ............E...
        0x0020:  0000 4000 4001 b0ec c0a8 0102 c0a8 01dc  ..@.@...........
        0x0030:  0800 7628 00c3 0001 f5da 1d65 0000 0000  ..v(.......e....
        0x0040:  ce65 0a00 0000 0000 1011 1213 1415 1617  .e..............
        0x0050:  1819 1a1b 1c1d 1e1f 2021 2223 2425 2627  .........!"#$%&'
        0x0060:  2829 2a2b 2c2d 2e2f 3031 3233 3435 3637  ()*+,-./0123456
(...)

- 3d93 = First four bytes are the last two bytes of the destination
  ethernet address I don't know why the first four are missing,
  but it sure explains why the paket is 1538 bytes and not 1542
  which is the actual max frame size.
- bcae c56b a83b = source ethernet address
- 8874 0300 0004 = Broadcom enetsw DSA tag
- 8100 0000 = VLAN 802.1Q header
- dada 0000 c020 0fff = EDSA tag for the Marvell (outer) switch,
- 0800 is the ethertype (part of the EDSA tag technically)
- Next follows the contents of the ping packet as it appears if
  we dump it on the DSA interface such as tcpdump -i lan1
  etc, there we get the stripped out packet, 1506 bytes.
- At the end 4 bytes of FCS.

This clearly illustrates that the DSA tag is included in the MTU
which we set up in Linux, but the VLAN tag and ethernet headers and
checksum is not.

Tested-by: Paul Donald <newtwen@gmail.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
2024-01-24 19:54:33 +01:00

1153 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* BCM6368 Ethernet Switch Controller Driver
*
* Copyright (C) 2021 Álvaro Fernández Rojas <noltari@gmail.com>
* Copyright (C) 2015 Jonas Gorski <jonas.gorski@gmail.com>
* Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/interrupt.h>
#include <linux/of_clk.h>
#include <linux/of_net.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/version.h>
/* TODO: Bigger frames may work but we do not trust that they are safe on all
* platforms so more research is needed, a max frame size of 2048 has been
* tested. We use the safe frame size 1542 which is 1532 plus DSA and VLAN
* overhead.
*/
#define ENETSW_MAX_FRAME 1542
#define ENETSW_DSA_TAG_SIZE 6
/* The MTU in Linux does not include ethernet or VLAN headers, but it DOES
* include the DSA overhead (the framework will increase the MTU to fit
* any DSA header).
*/
#define ENETSW_MAX_MTU (ENETSW_MAX_FRAME - VLAN_ETH_HLEN - \
VLAN_HLEN)
#define ENETSW_FRAG_SIZE(x) (SKB_DATA_ALIGN(NET_SKB_PAD + x + \
SKB_DATA_ALIGN(sizeof(struct skb_shared_info))))
/* default number of descriptor */
#define ENETSW_DEF_RX_DESC 64
#define ENETSW_DEF_TX_DESC 32
#define ENETSW_DEF_CPY_BREAK 128
/* maximum burst len for dma (4 bytes unit) */
#define ENETSW_DMA_MAXBURST 8
/* DMA channels */
#define DMA_CHAN_WIDTH 0x10
/* Controller Configuration Register */
#define DMA_CFG_REG 0x0
#define DMA_CFG_EN_SHIFT 0
#define DMA_CFG_EN_MASK (1 << DMA_CFG_EN_SHIFT)
#define DMA_CFG_FLOWCH_MASK(x) (1 << ((x >> 1) + 1))
/* Flow Control Descriptor Low Threshold register */
#define DMA_FLOWCL_REG(x) (0x4 + (x) * 6)
/* Flow Control Descriptor High Threshold register */
#define DMA_FLOWCH_REG(x) (0x8 + (x) * 6)
/* Flow Control Descriptor Buffer Alloca Threshold register */
#define DMA_BUFALLOC_REG(x) (0xc + (x) * 6)
#define DMA_BUFALLOC_FORCE_SHIFT 31
#define DMA_BUFALLOC_FORCE_MASK (1 << DMA_BUFALLOC_FORCE_SHIFT)
/* Channel Configuration register */
#define DMAC_CHANCFG_REG 0x0
#define DMAC_CHANCFG_EN_SHIFT 0
#define DMAC_CHANCFG_EN_MASK (1 << DMAC_CHANCFG_EN_SHIFT)
#define DMAC_CHANCFG_PKTHALT_SHIFT 1
#define DMAC_CHANCFG_PKTHALT_MASK (1 << DMAC_CHANCFG_PKTHALT_SHIFT)
#define DMAC_CHANCFG_BUFHALT_SHIFT 2
#define DMAC_CHANCFG_BUFHALT_MASK (1 << DMAC_CHANCFG_BUFHALT_SHIFT)
#define DMAC_CHANCFG_CHAINING_SHIFT 2
#define DMAC_CHANCFG_CHAINING_MASK (1 << DMAC_CHANCFG_CHAINING_SHIFT)
#define DMAC_CHANCFG_WRAP_EN_SHIFT 3
#define DMAC_CHANCFG_WRAP_EN_MASK (1 << DMAC_CHANCFG_WRAP_EN_SHIFT)
#define DMAC_CHANCFG_FLOWC_EN_SHIFT 4
#define DMAC_CHANCFG_FLOWC_EN_MASK (1 << DMAC_CHANCFG_FLOWC_EN_SHIFT)
/* Interrupt Control/Status register */
#define DMAC_IR_REG 0x4
#define DMAC_IR_BUFDONE_MASK (1 << 0)
#define DMAC_IR_PKTDONE_MASK (1 << 1)
#define DMAC_IR_NOTOWNER_MASK (1 << 2)
/* Interrupt Mask register */
#define DMAC_IRMASK_REG 0x8
/* Maximum Burst Length */
#define DMAC_MAXBURST_REG 0xc
/* Ring Start Address register */
#define DMAS_RSTART_REG 0x0
/* State Ram Word 2 */
#define DMAS_SRAM2_REG 0x4
/* State Ram Word 3 */
#define DMAS_SRAM3_REG 0x8
/* State Ram Word 4 */
#define DMAS_SRAM4_REG 0xc
struct bcm6368_enetsw_desc {
u32 len_stat;
u32 address;
};
/* control */
#define DMADESC_LENGTH_SHIFT 16
#define DMADESC_LENGTH_MASK (0xfff << DMADESC_LENGTH_SHIFT)
#define DMADESC_OWNER_MASK (1 << 15)
#define DMADESC_EOP_MASK (1 << 14)
#define DMADESC_SOP_MASK (1 << 13)
#define DMADESC_ESOP_MASK (DMADESC_EOP_MASK | DMADESC_SOP_MASK)
#define DMADESC_WRAP_MASK (1 << 12)
#define DMADESC_USB_NOZERO_MASK (1 << 1)
#define DMADESC_USB_ZERO_MASK (1 << 0)
/* status */
#define DMADESC_UNDER_MASK (1 << 9)
#define DMADESC_APPEND_CRC (1 << 8)
#define DMADESC_OVSIZE_MASK (1 << 4)
#define DMADESC_RXER_MASK (1 << 2)
#define DMADESC_CRC_MASK (1 << 1)
#define DMADESC_OV_MASK (1 << 0)
#define DMADESC_ERR_MASK (DMADESC_UNDER_MASK | \
DMADESC_OVSIZE_MASK | \
DMADESC_RXER_MASK | \
DMADESC_CRC_MASK | \
DMADESC_OV_MASK)
struct bcm6368_enetsw {
void __iomem *dma_base;
void __iomem *dma_chan;
void __iomem *dma_sram;
struct device **pm;
struct device_link **link_pm;
int num_pms;
struct clk **clock;
unsigned int num_clocks;
struct reset_control **reset;
unsigned int num_resets;
int copybreak;
int irq_rx;
int irq_tx;
/* hw view of rx & tx dma ring */
dma_addr_t rx_desc_dma;
dma_addr_t tx_desc_dma;
/* allocated size (in bytes) for rx & tx dma ring */
unsigned int rx_desc_alloc_size;
unsigned int tx_desc_alloc_size;
struct napi_struct napi;
/* dma channel id for rx */
int rx_chan;
/* number of dma desc in rx ring */
int rx_ring_size;
/* cpu view of rx dma ring */
struct bcm6368_enetsw_desc *rx_desc_cpu;
/* current number of armed descriptor given to hardware for rx */
int rx_desc_count;
/* next rx descriptor to fetch from hardware */
int rx_curr_desc;
/* next dirty rx descriptor to refill */
int rx_dirty_desc;
/* size of allocated rx buffer */
unsigned int rx_buf_size;
/* size of allocated rx frag */
unsigned int rx_frag_size;
/* list of buffer given to hw for rx */
unsigned char **rx_buf;
/* used when rx buffer allocation failed, so we defer rx queue
* refill */
struct timer_list rx_timeout;
/* lock rx_timeout against rx normal operation */
spinlock_t rx_lock;
/* dma channel id for tx */
int tx_chan;
/* number of dma desc in tx ring */
int tx_ring_size;
/* cpu view of rx dma ring */
struct bcm6368_enetsw_desc *tx_desc_cpu;
/* number of available descriptor for tx */
int tx_desc_count;
/* next tx descriptor avaiable */
int tx_curr_desc;
/* next dirty tx descriptor to reclaim */
int tx_dirty_desc;
/* list of skb given to hw for tx */
struct sk_buff **tx_skb;
/* lock used by tx reclaim and xmit */
spinlock_t tx_lock;
/* network device reference */
struct net_device *net_dev;
/* platform device reference */
struct platform_device *pdev;
};
static inline void dma_writel(struct bcm6368_enetsw *priv, u32 val, u32 off)
{
__raw_writel(val, priv->dma_base + off);
}
static inline u32 dma_readl(struct bcm6368_enetsw *priv, u32 off, int chan)
{
return __raw_readl(priv->dma_chan + off + chan * DMA_CHAN_WIDTH);
}
static inline void dmac_writel(struct bcm6368_enetsw *priv, u32 val, u32 off,
int chan)
{
__raw_writel(val, priv->dma_chan + off + chan * DMA_CHAN_WIDTH);
}
static inline void dmas_writel(struct bcm6368_enetsw *priv, u32 val,
u32 off, int chan)
{
__raw_writel(val, priv->dma_sram + off + chan * DMA_CHAN_WIDTH);
}
/*
* refill rx queue
*/
static int bcm6368_enetsw_refill_rx(struct net_device *ndev, bool napi_mode)
{
struct bcm6368_enetsw *priv = netdev_priv(ndev);
struct platform_device *pdev = priv->pdev;
struct device *dev = &pdev->dev;
while (priv->rx_desc_count < priv->rx_ring_size) {
struct bcm6368_enetsw_desc *desc;
int desc_idx;
u32 len_stat;
desc_idx = priv->rx_dirty_desc;
desc = &priv->rx_desc_cpu[desc_idx];
if (!priv->rx_buf[desc_idx]) {
unsigned char *buf;
dma_addr_t p;
if (likely(napi_mode))
buf = napi_alloc_frag(priv->rx_frag_size);
else
buf = netdev_alloc_frag(priv->rx_frag_size);
if (unlikely(!buf))
break;
p = dma_map_single(dev, buf + NET_SKB_PAD,
priv->rx_buf_size, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(dev, p))) {
skb_free_frag(buf);
break;
}
priv->rx_buf[desc_idx] = buf;
desc->address = p;
}
len_stat = priv->rx_buf_size << DMADESC_LENGTH_SHIFT;
len_stat |= DMADESC_OWNER_MASK;
if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
len_stat |= DMADESC_WRAP_MASK;
priv->rx_dirty_desc = 0;
} else {
priv->rx_dirty_desc++;
}
wmb();
desc->len_stat = len_stat;
priv->rx_desc_count++;
/* tell dma engine we allocated one buffer */
dma_writel(priv, 1, DMA_BUFALLOC_REG(priv->rx_chan));
}
/* If rx ring is still empty, set a timer to try allocating
* again at a later time. */
if (priv->rx_desc_count == 0 && netif_running(ndev)) {
dev_warn(dev, "unable to refill rx ring\n");
priv->rx_timeout.expires = jiffies + HZ;
add_timer(&priv->rx_timeout);
}
return 0;
}
/*
* timer callback to defer refill rx queue in case we're OOM
*/
static void bcm6368_enetsw_refill_rx_timer(struct timer_list *t)
{
struct bcm6368_enetsw *priv = from_timer(priv, t, rx_timeout);
struct net_device *ndev = priv->net_dev;
spin_lock(&priv->rx_lock);
bcm6368_enetsw_refill_rx(ndev, false);
spin_unlock(&priv->rx_lock);
}
/*
* extract packet from rx queue
*/
static int bcm6368_enetsw_receive_queue(struct net_device *ndev, int budget)
{
struct bcm6368_enetsw *priv = netdev_priv(ndev);
struct platform_device *pdev = priv->pdev;
struct device *dev = &pdev->dev;
struct list_head rx_list;
struct sk_buff *skb;
int processed = 0;
INIT_LIST_HEAD(&rx_list);
/* don't scan ring further than number of refilled
* descriptor */
if (budget > priv->rx_desc_count)
budget = priv->rx_desc_count;
do {
struct bcm6368_enetsw_desc *desc;
unsigned int frag_size;
unsigned char *buf;
int desc_idx;
u32 len_stat;
unsigned int len;
desc_idx = priv->rx_curr_desc;
desc = &priv->rx_desc_cpu[desc_idx];
/* make sure we actually read the descriptor status at
* each loop */
rmb();
len_stat = desc->len_stat;
/* break if dma ownership belongs to hw */
if (len_stat & DMADESC_OWNER_MASK)
break;
processed++;
priv->rx_curr_desc++;
if (priv->rx_curr_desc == priv->rx_ring_size)
priv->rx_curr_desc = 0;
/* if the packet does not have start of packet _and_
* end of packet flag set, then just recycle it */
if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
ndev->stats.rx_dropped++;
continue;
}
/* valid packet */
buf = priv->rx_buf[desc_idx];
len = (len_stat & DMADESC_LENGTH_MASK)
>> DMADESC_LENGTH_SHIFT;
/* don't include FCS */
len -= 4;
if (len < priv->copybreak) {
unsigned int nfrag_size = ENETSW_FRAG_SIZE(len);
unsigned char *nbuf = napi_alloc_frag(nfrag_size);
if (unlikely(!nbuf)) {
/* forget packet, just rearm desc */
ndev->stats.rx_dropped++;
continue;
}
dma_sync_single_for_cpu(dev, desc->address,
len, DMA_FROM_DEVICE);
memcpy(nbuf + NET_SKB_PAD, buf + NET_SKB_PAD, len);
dma_sync_single_for_device(dev, desc->address,
len, DMA_FROM_DEVICE);
buf = nbuf;
frag_size = nfrag_size;
} else {
dma_unmap_single(dev, desc->address,
priv->rx_buf_size, DMA_FROM_DEVICE);
priv->rx_buf[desc_idx] = NULL;
frag_size = priv->rx_frag_size;
}
skb = napi_build_skb(buf, frag_size);
if (unlikely(!skb)) {
skb_free_frag(buf);
ndev->stats.rx_dropped++;
continue;
}
skb_reserve(skb, NET_SKB_PAD);
skb_put(skb, len);
ndev->stats.rx_packets++;
ndev->stats.rx_bytes += len;
list_add_tail(&skb->list, &rx_list);
} while (processed < budget);
list_for_each_entry(skb, &rx_list, list)
skb->protocol = eth_type_trans(skb, ndev);
netif_receive_skb_list(&rx_list);
priv->rx_desc_count -= processed;
if (processed || !priv->rx_desc_count) {
bcm6368_enetsw_refill_rx(ndev, true);
/* kick rx dma */
dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
DMAC_CHANCFG_REG, priv->rx_chan);
}
return processed;
}
/*
* try to or force reclaim of transmitted buffers
*/
static int bcm6368_enetsw_tx_reclaim(struct net_device *ndev, int force,
int budget)
{
struct bcm6368_enetsw *priv = netdev_priv(ndev);
struct platform_device *pdev = priv->pdev;
struct device *dev = &pdev->dev;
unsigned int bytes = 0;
int released = 0;
while (priv->tx_desc_count < priv->tx_ring_size) {
struct bcm6368_enetsw_desc *desc;
struct sk_buff *skb;
/* We run in a bh and fight against start_xmit, which
* is called with bh disabled */
spin_lock(&priv->tx_lock);
desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
spin_unlock(&priv->tx_lock);
break;
}
/* ensure other field of the descriptor were not read
* before we checked ownership */
rmb();
skb = priv->tx_skb[priv->tx_dirty_desc];
priv->tx_skb[priv->tx_dirty_desc] = NULL;
dma_unmap_single(dev, desc->address, skb->len,
DMA_TO_DEVICE);
priv->tx_dirty_desc++;
if (priv->tx_dirty_desc == priv->tx_ring_size)
priv->tx_dirty_desc = 0;
priv->tx_desc_count++;
spin_unlock(&priv->tx_lock);
if (desc->len_stat & DMADESC_UNDER_MASK)
ndev->stats.tx_errors++;
bytes += skb->len;
napi_consume_skb(skb, budget);
released++;
}
netdev_completed_queue(ndev, released, bytes);
if (netif_queue_stopped(ndev) && released)
netif_wake_queue(ndev);
return released;
}
/*
* poll func, called by network core
*/
static int bcm6368_enetsw_poll(struct napi_struct *napi, int budget)
{
struct bcm6368_enetsw *priv = container_of(napi, struct bcm6368_enetsw, napi);
struct net_device *ndev = priv->net_dev;
int rx_work_done;
/* ack interrupts */
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IR_REG, priv->rx_chan);
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IR_REG, priv->tx_chan);
/* reclaim sent skb */
bcm6368_enetsw_tx_reclaim(ndev, 0, budget);
spin_lock(&priv->rx_lock);
rx_work_done = bcm6368_enetsw_receive_queue(ndev, budget);
spin_unlock(&priv->rx_lock);
if (rx_work_done >= budget) {
/* rx queue is not yet empty/clean */
return rx_work_done;
}
/* no more packet in rx/tx queue, remove device from poll
* queue */
napi_complete_done(napi, rx_work_done);
/* restore rx/tx interrupt */
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IRMASK_REG, priv->tx_chan);
return rx_work_done;
}
/*
* rx/tx dma interrupt handler
*/
static irqreturn_t bcm6368_enetsw_isr_dma(int irq, void *dev_id)
{
struct net_device *ndev = dev_id;
struct bcm6368_enetsw *priv = netdev_priv(ndev);
/* mask rx/tx interrupts */
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
napi_schedule(&priv->napi);
return IRQ_HANDLED;
}
/*
* tx request callback
*/
static netdev_tx_t
bcm6368_enetsw_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct bcm6368_enetsw *priv = netdev_priv(ndev);
struct platform_device *pdev = priv->pdev;
struct device *dev = &pdev->dev;
struct bcm6368_enetsw_desc *desc;
u32 len_stat;
netdev_tx_t ret;
dma_addr_t p;
/* lock against tx reclaim */
spin_lock(&priv->tx_lock);
/* make sure the tx hw queue is not full, should not happen
* since we stop queue before it's the case */
if (unlikely(!priv->tx_desc_count)) {
netif_stop_queue(ndev);
dev_err(dev, "xmit called with no tx desc available?\n");
ret = NETDEV_TX_BUSY;
goto out_unlock;
}
/* pad small packets */
if (skb->len < (ETH_ZLEN + ETH_FCS_LEN)) {
int needed = (ETH_ZLEN + ETH_FCS_LEN) - skb->len;
char *data;
if (unlikely(skb_tailroom(skb) < needed)) {
struct sk_buff *nskb;
nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
if (!nskb) {
ret = NETDEV_TX_BUSY;
goto out_unlock;
}
dev_kfree_skb(skb);
skb = nskb;
}
data = skb_put_zero(skb, needed);
}
/* fill descriptor */
p = dma_map_single(dev, skb->data, skb->len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev, p))) {
dev_kfree_skb(skb);
ret = NETDEV_TX_OK;
goto out_unlock;
}
/* point to the next available desc */
desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
priv->tx_skb[priv->tx_curr_desc] = skb;
desc->address = p;
len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
len_stat |= DMADESC_ESOP_MASK | DMADESC_APPEND_CRC |
DMADESC_OWNER_MASK;
priv->tx_curr_desc++;
if (priv->tx_curr_desc == priv->tx_ring_size) {
priv->tx_curr_desc = 0;
len_stat |= DMADESC_WRAP_MASK;
}
priv->tx_desc_count--;
/* dma might be already polling, make sure we update desc
* fields in correct order */
wmb();
desc->len_stat = len_stat;
wmb();
netdev_sent_queue(ndev, skb->len);
/* kick tx dma */
dmac_writel(priv, DMAC_CHANCFG_EN_MASK, DMAC_CHANCFG_REG,
priv->tx_chan);
/* stop queue if no more desc available */
if (!priv->tx_desc_count)
netif_stop_queue(ndev);
ndev->stats.tx_bytes += skb->len;
ndev->stats.tx_packets++;
ret = NETDEV_TX_OK;
out_unlock:
spin_unlock(&priv->tx_lock);
return ret;
}
/*
* disable dma in given channel
*/
static void bcm6368_enetsw_disable_dma(struct bcm6368_enetsw *priv, int chan)
{
int limit = 1000;
dmac_writel(priv, 0, DMAC_CHANCFG_REG, chan);
do {
u32 val;
val = dma_readl(priv, DMAC_CHANCFG_REG, chan);
if (!(val & DMAC_CHANCFG_EN_MASK))
break;
udelay(1);
} while (limit--);
}
static int bcm6368_enetsw_open(struct net_device *ndev)
{
struct bcm6368_enetsw *priv = netdev_priv(ndev);
struct platform_device *pdev = priv->pdev;
struct device *dev = &pdev->dev;
int i, ret;
unsigned int size;
void *p;
u32 val;
/* mask all interrupts and request them */
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
ret = request_irq(priv->irq_rx, bcm6368_enetsw_isr_dma,
0, ndev->name, ndev);
if (ret)
goto out_freeirq;
if (priv->irq_tx != -1) {
ret = request_irq(priv->irq_tx, bcm6368_enetsw_isr_dma,
0, ndev->name, ndev);
if (ret)
goto out_freeirq_rx;
}
/* allocate rx dma ring */
size = priv->rx_ring_size * sizeof(struct bcm6368_enetsw_desc);
p = dma_alloc_coherent(dev, size, &priv->rx_desc_dma, GFP_KERNEL);
if (!p) {
dev_err(dev, "cannot allocate rx ring %u\n", size);
ret = -ENOMEM;
goto out_freeirq_tx;
}
memset(p, 0, size);
priv->rx_desc_alloc_size = size;
priv->rx_desc_cpu = p;
/* allocate tx dma ring */
size = priv->tx_ring_size * sizeof(struct bcm6368_enetsw_desc);
p = dma_alloc_coherent(dev, size, &priv->tx_desc_dma, GFP_KERNEL);
if (!p) {
dev_err(dev, "cannot allocate tx ring\n");
ret = -ENOMEM;
goto out_free_rx_ring;
}
memset(p, 0, size);
priv->tx_desc_alloc_size = size;
priv->tx_desc_cpu = p;
priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
GFP_KERNEL);
if (!priv->tx_skb) {
dev_err(dev, "cannot allocate tx skb queue\n");
ret = -ENOMEM;
goto out_free_tx_ring;
}
priv->tx_desc_count = priv->tx_ring_size;
priv->tx_dirty_desc = 0;
priv->tx_curr_desc = 0;
spin_lock_init(&priv->tx_lock);
/* init & fill rx ring with buffers */
priv->rx_buf = kzalloc(sizeof(unsigned char *) * priv->rx_ring_size,
GFP_KERNEL);
if (!priv->rx_buf) {
dev_err(dev, "cannot allocate rx buffer queue\n");
ret = -ENOMEM;
goto out_free_tx_skb;
}
priv->rx_desc_count = 0;
priv->rx_dirty_desc = 0;
priv->rx_curr_desc = 0;
/* initialize flow control buffer allocation */
dma_writel(priv, DMA_BUFALLOC_FORCE_MASK | 0,
DMA_BUFALLOC_REG(priv->rx_chan));
if (bcm6368_enetsw_refill_rx(ndev, false)) {
dev_err(dev, "cannot allocate rx buffer queue\n");
ret = -ENOMEM;
goto out;
}
/* write rx & tx ring addresses */
dmas_writel(priv, priv->rx_desc_dma,
DMAS_RSTART_REG, priv->rx_chan);
dmas_writel(priv, priv->tx_desc_dma,
DMAS_RSTART_REG, priv->tx_chan);
/* clear remaining state ram for rx & tx channel */
dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->rx_chan);
dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->tx_chan);
dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->rx_chan);
dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->tx_chan);
dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->rx_chan);
dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->tx_chan);
/* set dma maximum burst len */
dmac_writel(priv, ENETSW_DMA_MAXBURST,
DMAC_MAXBURST_REG, priv->rx_chan);
dmac_writel(priv, ENETSW_DMA_MAXBURST,
DMAC_MAXBURST_REG, priv->tx_chan);
/* set flow control low/high threshold to 1/3 / 2/3 */
val = priv->rx_ring_size / 3;
dma_writel(priv, val, DMA_FLOWCL_REG(priv->rx_chan));
val = (priv->rx_ring_size * 2) / 3;
dma_writel(priv, val, DMA_FLOWCH_REG(priv->rx_chan));
/* all set, enable mac and interrupts, start dma engine and
* kick rx dma channel
*/
wmb();
dma_writel(priv, DMA_CFG_EN_MASK, DMA_CFG_REG);
dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
DMAC_CHANCFG_REG, priv->rx_chan);
/* watch "packet transferred" interrupt in rx and tx */
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IR_REG, priv->rx_chan);
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IR_REG, priv->tx_chan);
/* make sure we enable napi before rx interrupt */
napi_enable(&priv->napi);
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IRMASK_REG, priv->tx_chan);
netif_carrier_on(ndev);
netif_start_queue(ndev);
return 0;
out:
for (i = 0; i < priv->rx_ring_size; i++) {
struct bcm6368_enetsw_desc *desc;
if (!priv->rx_buf[i])
continue;
desc = &priv->rx_desc_cpu[i];
dma_unmap_single(dev, desc->address, priv->rx_buf_size,
DMA_FROM_DEVICE);
skb_free_frag(priv->rx_buf[i]);
}
kfree(priv->rx_buf);
out_free_tx_skb:
kfree(priv->tx_skb);
out_free_tx_ring:
dma_free_coherent(dev, priv->tx_desc_alloc_size,
priv->tx_desc_cpu, priv->tx_desc_dma);
out_free_rx_ring:
dma_free_coherent(dev, priv->rx_desc_alloc_size,
priv->rx_desc_cpu, priv->rx_desc_dma);
out_freeirq_tx:
if (priv->irq_tx != -1)
free_irq(priv->irq_tx, ndev);
out_freeirq_rx:
free_irq(priv->irq_rx, ndev);
out_freeirq:
return ret;
}
static int bcm6368_enetsw_stop(struct net_device *ndev)
{
struct bcm6368_enetsw *priv = netdev_priv(ndev);
struct platform_device *pdev = priv->pdev;
struct device *dev = &pdev->dev;
int i;
netif_stop_queue(ndev);
napi_disable(&priv->napi);
del_timer_sync(&priv->rx_timeout);
/* mask all interrupts */
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
/* disable dma & mac */
bcm6368_enetsw_disable_dma(priv, priv->tx_chan);
bcm6368_enetsw_disable_dma(priv, priv->rx_chan);
/* force reclaim of all tx buffers */
bcm6368_enetsw_tx_reclaim(ndev, 1, 0);
/* free the rx buffer ring */
for (i = 0; i < priv->rx_ring_size; i++) {
struct bcm6368_enetsw_desc *desc;
if (!priv->rx_buf[i])
continue;
desc = &priv->rx_desc_cpu[i];
dma_unmap_single_attrs(dev, desc->address, priv->rx_buf_size,
DMA_FROM_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
skb_free_frag(priv->rx_buf[i]);
}
/* free remaining allocated memory */
kfree(priv->rx_buf);
kfree(priv->tx_skb);
dma_free_coherent(dev, priv->rx_desc_alloc_size,
priv->rx_desc_cpu, priv->rx_desc_dma);
dma_free_coherent(dev, priv->tx_desc_alloc_size,
priv->tx_desc_cpu, priv->tx_desc_dma);
if (priv->irq_tx != -1)
free_irq(priv->irq_tx, ndev);
free_irq(priv->irq_rx, ndev);
netdev_reset_queue(ndev);
return 0;
}
static const struct net_device_ops bcm6368_enetsw_ops = {
.ndo_open = bcm6368_enetsw_open,
.ndo_stop = bcm6368_enetsw_stop,
.ndo_start_xmit = bcm6368_enetsw_start_xmit,
};
static int bcm6368_enetsw_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
struct bcm6368_enetsw *priv;
struct net_device *ndev;
struct resource *res;
unsigned char dev_addr[ETH_ALEN];
unsigned i;
int num_resets;
int ret;
ndev = devm_alloc_etherdev(dev, sizeof(*priv));
if (!ndev)
return -ENOMEM;
platform_set_drvdata(pdev, ndev);
SET_NETDEV_DEV(ndev, dev);
priv = netdev_priv(ndev);
priv->pdev = pdev;
priv->net_dev = ndev;
priv->num_pms = of_count_phandle_with_args(node, "power-domains",
"#power-domain-cells");
if (priv->num_pms > 1) {
priv->pm = devm_kcalloc(dev, priv->num_pms,
sizeof(struct device *), GFP_KERNEL);
if (!priv->pm)
return -ENOMEM;
priv->link_pm = devm_kcalloc(dev, priv->num_pms,
sizeof(struct device_link *),
GFP_KERNEL);
if (!priv->link_pm)
return -ENOMEM;
for (i = 0; i < priv->num_pms; i++) {
priv->pm[i] = genpd_dev_pm_attach_by_id(dev, i);
if (IS_ERR(priv->pm[i])) {
dev_err(dev, "error getting pm %d\n", i);
return -EINVAL;
}
priv->link_pm[i] = device_link_add(dev, priv->pm[i],
DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME |
DL_FLAG_RPM_ACTIVE);
}
}
pm_runtime_enable(dev);
pm_runtime_no_callbacks(dev);
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_disable(dev);
dev_info(dev, "PM prober defer: ret=%d\n", ret);
return -EPROBE_DEFER;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
priv->dma_base = devm_ioremap_resource(dev, res);
if (IS_ERR_OR_NULL(priv->dma_base))
return PTR_ERR(priv->dma_base);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"dma-channels");
priv->dma_chan = devm_ioremap_resource(dev, res);
if (IS_ERR_OR_NULL(priv->dma_chan))
return PTR_ERR(priv->dma_chan);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma-sram");
priv->dma_sram = devm_ioremap_resource(dev, res);
if (IS_ERR_OR_NULL(priv->dma_sram))
return PTR_ERR(priv->dma_sram);
priv->irq_rx = platform_get_irq_byname(pdev, "rx");
if (!priv->irq_rx)
return -ENODEV;
priv->irq_tx = platform_get_irq_byname(pdev, "tx");
if (!priv->irq_tx)
return -ENODEV;
else if (priv->irq_tx < 0)
priv->irq_tx = -1;
if (device_property_read_u32(dev, "dma-rx", &priv->rx_chan))
return -ENODEV;
if (device_property_read_u32(dev, "dma-tx", &priv->tx_chan))
return -ENODEV;
priv->rx_ring_size = ENETSW_DEF_RX_DESC;
priv->tx_ring_size = ENETSW_DEF_TX_DESC;
priv->copybreak = ENETSW_DEF_CPY_BREAK;
of_get_mac_address(node, dev_addr);
if (is_valid_ether_addr(dev_addr)) {
dev_addr_set(ndev, dev_addr);
dev_info(dev, "mtd mac %pM\n", dev_addr);
} else {
eth_hw_addr_random(ndev);
dev_info(dev, "random mac\n");
}
priv->rx_buf_size = ALIGN(ENETSW_MAX_FRAME,
ENETSW_DMA_MAXBURST * 4);
priv->rx_frag_size = ENETSW_FRAG_SIZE(priv->rx_buf_size);
priv->num_clocks = of_clk_get_parent_count(node);
if (priv->num_clocks) {
priv->clock = devm_kcalloc(dev, priv->num_clocks,
sizeof(struct clk *), GFP_KERNEL);
if (IS_ERR_OR_NULL(priv->clock))
return PTR_ERR(priv->clock);
}
for (i = 0; i < priv->num_clocks; i++) {
priv->clock[i] = of_clk_get(node, i);
if (IS_ERR(priv->clock[i])) {
dev_err(dev, "error getting clock %d\n", i);
return PTR_ERR(priv->clock[i]);
}
ret = clk_prepare_enable(priv->clock[i]);
if (ret) {
dev_err(dev, "error enabling clock %d\n", i);
return ret;
}
}
num_resets = of_count_phandle_with_args(node, "resets",
"#reset-cells");
if (num_resets > 0)
priv->num_resets = num_resets;
else
priv->num_resets = 0;
if (priv->num_resets) {
priv->reset = devm_kcalloc(dev, priv->num_resets,
sizeof(struct reset_control *),
GFP_KERNEL);
if (IS_ERR_OR_NULL(priv->reset))
return PTR_ERR(priv->reset);
}
for (i = 0; i < priv->num_resets; i++) {
priv->reset[i] = devm_reset_control_get_by_index(dev, i);
if (IS_ERR(priv->reset[i])) {
dev_err(dev, "error getting reset %d\n", i);
return PTR_ERR(priv->reset[i]);
}
ret = reset_control_reset(priv->reset[i]);
if (ret) {
dev_err(dev, "error performing reset %d\n", i);
return ret;
}
}
spin_lock_init(&priv->rx_lock);
timer_setup(&priv->rx_timeout, bcm6368_enetsw_refill_rx_timer, 0);
/* register netdevice */
ndev->netdev_ops = &bcm6368_enetsw_ops;
ndev->min_mtu = ETH_ZLEN;
ndev->mtu = ETH_DATA_LEN;
ndev->max_mtu = ENETSW_MAX_MTU;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(6,1,0)
netif_napi_add(ndev, &priv->napi, bcm6368_enetsw_poll);
#else
netif_napi_add(ndev, &priv->napi, bcm6368_enetsw_poll, 16);
#endif
ret = devm_register_netdev(dev, ndev);
if (ret) {
netif_napi_del(&priv->napi);
goto out_disable_clk;
}
netif_carrier_off(ndev);
dev_info(dev, "%s at 0x%px, IRQ %d\n", ndev->name, priv->dma_base, ndev->irq);
return 0;
out_disable_clk:
for (i = 0; i < priv->num_resets; i++)
reset_control_assert(priv->reset[i]);
for (i = 0; i < priv->num_clocks; i++)
clk_disable_unprepare(priv->clock[i]);
return ret;
}
static int bcm6368_enetsw_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct net_device *ndev = platform_get_drvdata(pdev);
struct bcm6368_enetsw *priv = netdev_priv(ndev);
unsigned int i;
pm_runtime_put_sync(dev);
for (i = 0; priv->pm && i < priv->num_pms; i++) {
dev_pm_domain_detach(priv->pm[i], true);
device_link_del(priv->link_pm[i]);
}
for (i = 0; i < priv->num_resets; i++)
reset_control_assert(priv->reset[i]);
for (i = 0; i < priv->num_clocks; i++)
clk_disable_unprepare(priv->clock[i]);
return 0;
}
static const struct of_device_id bcm6368_enetsw_of_match[] = {
{ .compatible = "brcm,bcm6318-enetsw", },
{ .compatible = "brcm,bcm6328-enetsw", },
{ .compatible = "brcm,bcm6362-enetsw", },
{ .compatible = "brcm,bcm6368-enetsw", },
{ .compatible = "brcm,bcm63268-enetsw", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, bcm6368_enetsw_of_match);
static struct platform_driver bcm6368_enetsw_driver = {
.driver = {
.name = "bcm6368-enetsw",
.of_match_table = of_match_ptr(bcm6368_enetsw_of_match),
},
.probe = bcm6368_enetsw_probe,
.remove = bcm6368_enetsw_remove,
};
module_platform_driver(bcm6368_enetsw_driver);
MODULE_AUTHOR("Álvaro Fernández Rojas <noltari@gmail.com>");
MODULE_DESCRIPTION("BCM6368 Ethernet Switch Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:bcm6368-enetsw");