// SPDX-License-Identifier: GPL-2.0-only

#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include <net/nexthop.h>

#include "rtl83xx.h"

extern struct mutex smi_lock;

// see_dal_maple_acl_log2PhyTmplteField and src/app/diag_v2/src/diag_acl.c
/* Definition of the RTL838X-specific template field IDs as used in the PIE */
enum template_field_id {
	TEMPLATE_FIELD_SPMMASK = 0,
	TEMPLATE_FIELD_SPM0 = 1,	// Source portmask ports 0-15
	TEMPLATE_FIELD_SPM1 = 2,	// Source portmask ports 16-28
	TEMPLATE_FIELD_RANGE_CHK = 3,
	TEMPLATE_FIELD_DMAC0 = 4,	// Destination MAC [15:0]
	TEMPLATE_FIELD_DMAC1 = 5,	// Destination MAC [31:16]
	TEMPLATE_FIELD_DMAC2 = 6,	// Destination MAC [47:32]
	TEMPLATE_FIELD_SMAC0 = 7,	// Source MAC [15:0]
	TEMPLATE_FIELD_SMAC1 = 8,	// Source MAC [31:16]
	TEMPLATE_FIELD_SMAC2 = 9,	// Source MAC [47:32]
	TEMPLATE_FIELD_ETHERTYPE = 10,	// Ethernet typ
	TEMPLATE_FIELD_OTAG = 11,	// Outer VLAN tag
	TEMPLATE_FIELD_ITAG = 12,	// Inner VLAN tag
	TEMPLATE_FIELD_SIP0 = 13,	// IPv4 or IPv6 source IP[15:0] or ARP/RARP
					// source protocol address in header
	TEMPLATE_FIELD_SIP1 = 14,	// IPv4 or IPv6 source IP[31:16] or ARP/RARP
	TEMPLATE_FIELD_DIP0 = 15,	// IPv4 or IPv6 destination IP[15:0]
	TEMPLATE_FIELD_DIP1 = 16,	// IPv4 or IPv6 destination IP[31:16]
	TEMPLATE_FIELD_IP_TOS_PROTO = 17, // IPv4 TOS/IPv6 traffic class and
					  // IPv4 proto/IPv6 next header fields
	TEMPLATE_FIELD_L34_HEADER = 18,	// packet with extra tag and IPv6 with auth, dest,
					// frag, route, hop-by-hop option header,
					// IGMP type, TCP flag
	TEMPLATE_FIELD_L4_SPORT = 19,	// TCP/UDP source port
	TEMPLATE_FIELD_L4_DPORT = 20,	// TCP/UDP destination port
	TEMPLATE_FIELD_ICMP_IGMP = 21,
	TEMPLATE_FIELD_IP_RANGE = 22,
	TEMPLATE_FIELD_FIELD_SELECTOR_VALID = 23, // Field selector mask
	TEMPLATE_FIELD_FIELD_SELECTOR_0 = 24,
	TEMPLATE_FIELD_FIELD_SELECTOR_1 = 25,
	TEMPLATE_FIELD_FIELD_SELECTOR_2 = 26,
	TEMPLATE_FIELD_FIELD_SELECTOR_3 = 27,
	TEMPLATE_FIELD_SIP2 = 28,	// IPv6 source IP[47:32]
	TEMPLATE_FIELD_SIP3 = 29,	// IPv6 source IP[63:48]
	TEMPLATE_FIELD_SIP4 = 30,	// IPv6 source IP[79:64]
	TEMPLATE_FIELD_SIP5 = 31,	// IPv6 source IP[95:80]
	TEMPLATE_FIELD_SIP6 = 32,	// IPv6 source IP[111:96]
	TEMPLATE_FIELD_SIP7 = 33,	// IPv6 source IP[127:112]
	TEMPLATE_FIELD_DIP2 = 34,	// IPv6 destination IP[47:32]
	TEMPLATE_FIELD_DIP3 = 35,	// IPv6 destination IP[63:48]
	TEMPLATE_FIELD_DIP4 = 36,	// IPv6 destination IP[79:64]
	TEMPLATE_FIELD_DIP5 = 37,	// IPv6 destination IP[95:80]
	TEMPLATE_FIELD_DIP6 = 38,	// IPv6 destination IP[111:96]
	TEMPLATE_FIELD_DIP7 = 39,	// IPv6 destination IP[127:112]
	TEMPLATE_FIELD_FWD_VID = 40,	// Forwarding VLAN-ID
	TEMPLATE_FIELD_FLOW_LABEL = 41,
};

/*
 * The RTL838X SoCs use 5 fixed templates with definitions for which data fields are to
 * be copied from the Ethernet Frame header into the 12 User-definable fields of the Packet
 * Inspection Engine's buffer. The following defines the field contents for each of the fixed
 * templates. Additionally, 3 user-definable templates can be set up via the definitions
 * in RTL838X_ACL_TMPLTE_CTRL control registers.
 * TODO: See all src/app/diag_v2/src/diag_pie.c
 */
#define N_FIXED_TEMPLATES 5
static enum template_field_id fixed_templates[N_FIXED_TEMPLATES][N_FIXED_FIELDS] =
{
	{
	  TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_OTAG,
	  TEMPLATE_FIELD_SMAC0, TEMPLATE_FIELD_SMAC1, TEMPLATE_FIELD_SMAC2,
	  TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
	  TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_RANGE_CHK
	}, {
	  TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0,
	  TEMPLATE_FIELD_DIP1,TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_L4_SPORT,
	  TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_ITAG,
	  TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
	}, {
	  TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
	  TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_IP_TOS_PROTO,
	  TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_SIP0,
	  TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1
	}, {
	  TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_DIP2,
	  TEMPLATE_FIELD_DIP3, TEMPLATE_FIELD_DIP4, TEMPLATE_FIELD_DIP5,
	  TEMPLATE_FIELD_DIP6, TEMPLATE_FIELD_DIP7, TEMPLATE_FIELD_L4_DPORT,
	  TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_IP_TOS_PROTO
	}, {
	  TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_SIP2,
	  TEMPLATE_FIELD_SIP3, TEMPLATE_FIELD_SIP4, TEMPLATE_FIELD_SIP5,
	  TEMPLATE_FIELD_SIP6, TEMPLATE_FIELD_SIP7, TEMPLATE_FIELD_ITAG,
	  TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
	},
};

void rtl838x_print_matrix(void)
{
	unsigned volatile int *ptr8;
	int i;

	ptr8 = RTL838X_SW_BASE + RTL838X_PORT_ISO_CTRL(0);
	for (i = 0; i < 28; i += 8)
		pr_debug("> %8x %8x %8x %8x %8x %8x %8x %8x\n",
			ptr8[i + 0], ptr8[i + 1], ptr8[i + 2], ptr8[i + 3],
			ptr8[i + 4], ptr8[i + 5], ptr8[i + 6], ptr8[i + 7]);
	pr_debug("CPU_PORT> %8x\n", ptr8[28]);
}

static inline int rtl838x_port_iso_ctrl(int p)
{
	return RTL838X_PORT_ISO_CTRL(p);
}

static inline void rtl838x_exec_tbl0_cmd(u32 cmd)
{
	sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_0);
	do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_0) & BIT(15));
}

static inline void rtl838x_exec_tbl1_cmd(u32 cmd)
{
	sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_1);
	do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_1) & BIT(15));
}

static inline int rtl838x_tbl_access_data_0(int i)
{
	return RTL838X_TBL_ACCESS_DATA_0(i);
}

static void rtl838x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
{
	u32 v;
	// Read VLAN table (0) via register 0
	struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);

	rtl_table_read(r, vlan);
	info->tagged_ports = sw_r32(rtl_table_data(r, 0));
	v = sw_r32(rtl_table_data(r, 1));
	pr_debug("VLAN_READ %d: %016llx %08x\n", vlan, info->tagged_ports, v);
	rtl_table_release(r);

	info->profile_id = v & 0x7;
	info->hash_mc_fid = !!(v & 0x8);
	info->hash_uc_fid = !!(v & 0x10);
	info->fid = (v >> 5) & 0x3f;

	// Read UNTAG table (0) via table register 1
	r = rtl_table_get(RTL8380_TBL_1, 0);
	rtl_table_read(r, vlan);
	info->untagged_ports = sw_r32(rtl_table_data(r, 0));
	rtl_table_release(r);
}

static void rtl838x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info)
{
	u32 v;
	// Access VLAN table (0) via register 0
	struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);

	sw_w32(info->tagged_ports, rtl_table_data(r, 0));

	v = info->profile_id;
	v |= info->hash_mc_fid ? 0x8 : 0;
	v |= info->hash_uc_fid ? 0x10 : 0;
	v |= ((u32)info->fid) << 5;
	sw_w32(v, rtl_table_data(r, 1));

	rtl_table_write(r, vlan);
	rtl_table_release(r);
}

static void rtl838x_vlan_set_untagged(u32 vlan, u64 portmask)
{
	// Access UNTAG table (0) via register 1
	struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 0);

	sw_w32(portmask & 0x1fffffff, rtl_table_data(r, 0));
	rtl_table_write(r, vlan);
	rtl_table_release(r);
}

/* Sets the L2 forwarding to be based on either the inner VLAN tag or the outer
 */
static void rtl838x_vlan_fwd_on_inner(int port, bool is_set)
{
	if (is_set)
		sw_w32_mask(BIT(port), 0, RTL838X_VLAN_PORT_FWD);
	else
		sw_w32_mask(0, BIT(port), RTL838X_VLAN_PORT_FWD);
}

static u64 rtl838x_l2_hash_seed(u64 mac, u32 vid)
{
	return mac << 12 | vid;
}

/*
 * Applies the same hash algorithm as the one used currently by the ASIC to the seed
 * and returns a key into the L2 hash table
 */
static u32 rtl838x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
{
	u32 h1, h2, h3, h;

	if (sw_r32(priv->r->l2_ctrl_0) & 1) {
		h1 = (seed >> 11) & 0x7ff;
		h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f);

		h2 = (seed >> 33) & 0x7ff;
		h2 = ((h2 & 0x3f) << 5) | ((h2 >> 6) & 0x1f);

		h3 = (seed >> 44) & 0x7ff;
		h3 = ((h3 & 0x7f) << 4) | ((h3 >> 7) & 0xf);

		h = h1 ^ h2 ^ h3 ^ ((seed >> 55) & 0x1ff);
		h ^= ((seed >> 22) & 0x7ff) ^ (seed & 0x7ff);
	} else {
		h = ((seed >> 55) & 0x1ff) ^ ((seed >> 44) & 0x7ff)
			^ ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff)
			^ ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff);
	}

	return h;
}

static inline int rtl838x_mac_force_mode_ctrl(int p)
{
	return RTL838X_MAC_FORCE_MODE_CTRL + (p << 2);
}

static inline int rtl838x_mac_port_ctrl(int p)
{
	return RTL838X_MAC_PORT_CTRL(p);
}

static inline int rtl838x_l2_port_new_salrn(int p)
{
	return RTL838X_L2_PORT_NEW_SALRN(p);
}

static inline int rtl838x_l2_port_new_sa_fwd(int p)
{
	return RTL838X_L2_PORT_NEW_SA_FWD(p);
}

static inline int rtl838x_mac_link_spd_sts(int p)
{
	return RTL838X_MAC_LINK_SPD_STS(p);
}

inline static int rtl838x_trk_mbr_ctr(int group)
{
	return RTL838X_TRK_MBR_CTR + (group << 2);
}

/*
 * Fills an L2 entry structure from the SoC registers
 */
static void rtl838x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
{
	/* Table contains different entry types, we need to identify the right one:
	 * Check for MC entries, first
	 * In contrast to the RTL93xx SoCs, there is no valid bit, use heuristics to
	 * identify valid entries
	 */
	e->is_ip_mc = !!(r[0] & BIT(22));
	e->is_ipv6_mc = !!(r[0] & BIT(21));
	e->type = L2_INVALID;

	if (!e->is_ip_mc && !e->is_ipv6_mc) {
		e->mac[0] = (r[1] >> 20);
		e->mac[1] = (r[1] >> 12);
		e->mac[2] = (r[1] >> 4);
		e->mac[3] = (r[1] & 0xf) << 4 | (r[2] >> 28);
		e->mac[4] = (r[2] >> 20);
		e->mac[5] = (r[2] >> 12);

		e->rvid = r[2] & 0xfff;
		e->vid = r[0] & 0xfff;

		/* Is it a unicast entry? check multicast bit */
		if (!(e->mac[0] & 1)) {
			e->is_static = !!((r[0] >> 19) & 1);
			e->port = (r[0] >> 12) & 0x1f;
			e->block_da = !!(r[1] & BIT(30));
			e->block_sa = !!(r[1] & BIT(31));
			e->suspended = !!(r[1] & BIT(29));
			e->next_hop = !!(r[1] & BIT(28));
			if (e->next_hop) {
				pr_debug("Found next hop entry, need to read extra data\n");
				e->nh_vlan_target = !!(r[0] & BIT(9));
				e->nh_route_id = r[0] & 0x1ff;
				e->vid = e->rvid;
			}
			e->age = (r[0] >> 17) & 0x3;
			e->valid = true;
			
			/* A valid entry has one of mutli-cast, aging, sa/da-blocking,
			 * next-hop or static entry bit set */
			if (!(r[0] & 0x007c0000) && !(r[1] & 0xd0000000))
				e->valid = false;
			else
				e->type = L2_UNICAST;
		} else { // L2 multicast
			pr_debug("Got L2 MC entry: %08x %08x %08x\n", r[0], r[1], r[2]);
			e->valid = true;
			e->type = L2_MULTICAST;
			e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
		}
	} else { // IPv4 and IPv6 multicast
		e->valid = true;
		e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
		e->mc_gip = (r[1] << 20) | (r[2] >> 12);
		e->rvid = r[2] & 0xfff;
	}
	if (e->is_ip_mc)
		e->type = IP4_MULTICAST;
	if (e->is_ipv6_mc)
		e->type = IP6_MULTICAST;
}

/*
 * Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry
 */
static void rtl838x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
{
	u64 mac = ether_addr_to_u64(e->mac);

	if (!e->valid) {
		r[0] = r[1] = r[2] = 0;
		return;
	}

	r[0] = e->is_ip_mc ? BIT(22) : 0;
	r[0] |= e->is_ipv6_mc ? BIT(21) : 0;

	if (!e->is_ip_mc && !e->is_ipv6_mc) {
		r[1] = mac >> 20;
		r[2] = (mac & 0xfffff) << 12;

		/* Is it a unicast entry? check multicast bit */
		if (!(e->mac[0] & 1)) {
			r[0] |= e->is_static ? BIT(19) : 0;
			r[0] |= (e->port & 0x3f) << 12;
			r[0] |= e->vid;
			r[1] |= e->block_da ? BIT(30) : 0;
			r[1] |= e->block_sa ? BIT(31) : 0;
			r[1] |= e->suspended ? BIT(29) : 0;
			r[2] |= e->rvid & 0xfff;
			if (e->next_hop) {
				r[1] |= BIT(28);
				r[0] |= e->nh_vlan_target ? BIT(9) : 0;
				r[0] |= e->nh_route_id & 0x1ff;
			}
			r[0] |= (e->age & 0x3) << 17;
		} else { // L2 Multicast
			r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
			r[2] |= e->rvid & 0xfff;
			r[0] |= e->vid & 0xfff;
			pr_debug("FILL MC: %08x %08x %08x\n", r[0], r[1], r[2]);
		}
	} else { // IPv4 and IPv6 multicast
		r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
		r[1] = e->mc_gip >> 20;
		r[2] = e->mc_gip << 12;
		r[2] |= e->rvid;
	}
}

/*
 * Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
 * hash is the id of the bucket and pos is the position of the entry in that bucket
 * The data read from the SoC is filled into rtl838x_l2_entry
 */
static u64 rtl838x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
	u64 entry;
	u32 r[3];
	struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0); // Access L2 Table 0
	u32 idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket
	int i;

	rtl_table_read(q, idx);
	for (i= 0; i < 3; i++)
		r[i] = sw_r32(rtl_table_data(q, i));

	rtl_table_release(q);

	rtl838x_fill_l2_entry(r, e);
	if (!e->valid)
		return 0;

	entry = (((u64) r[1]) << 32) | (r[2]);  // mac and vid concatenated as hash seed
	return entry;
}

static void rtl838x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
	u32 r[3];
	struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0);
	int i;

	u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket

	rtl838x_fill_l2_row(r, e);

	for (i= 0; i < 3; i++)
		sw_w32(r[i], rtl_table_data(q, i));

	rtl_table_write(q, idx);
	rtl_table_release(q);
}

static u64 rtl838x_read_cam(int idx, struct rtl838x_l2_entry *e)
{
	u64 entry;
	u32 r[3];
	struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); // Access L2 Table 1
	int i;

	rtl_table_read(q, idx);
	for (i= 0; i < 3; i++)
		r[i] = sw_r32(rtl_table_data(q, i));

	rtl_table_release(q);

	rtl838x_fill_l2_entry(r, e);
	if (!e->valid)
		return 0;

	pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);

	// Return MAC with concatenated VID ac concatenated ID
	entry = (((u64) r[1]) << 32) | r[2];
	return entry;
}

static void rtl838x_write_cam(int idx, struct rtl838x_l2_entry *e)
{
	u32 r[3];
	struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); // Access L2 Table 1
	int i;

	rtl838x_fill_l2_row(r, e);

	for (i= 0; i < 3; i++)
		sw_w32(r[i], rtl_table_data(q, i));

	rtl_table_write(q, idx);
	rtl_table_release(q);
}

static u64 rtl838x_read_mcast_pmask(int idx)
{
	u32 portmask;
	// Read MC_PMSK (2) via register RTL8380_TBL_L2
	struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);

	rtl_table_read(q, idx);
	portmask = sw_r32(rtl_table_data(q, 0));
	rtl_table_release(q);

	return portmask;
}

static void rtl838x_write_mcast_pmask(int idx, u64 portmask)
{
	// Access MC_PMSK (2) via register RTL8380_TBL_L2
	struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);

	sw_w32(((u32)portmask) & 0x1fffffff, rtl_table_data(q, 0));
	rtl_table_write(q, idx);
	rtl_table_release(q);
}

static void rtl838x_vlan_profile_setup(int profile)
{
	u32 pmask_id = UNKNOWN_MC_PMASK;
	// Enable L2 Learning BIT 0, portmask UNKNOWN_MC_PMASK for unknown MC traffic flooding
	u32 p = 1 | pmask_id << 1 | pmask_id << 10 | pmask_id << 19;

	sw_w32(p, RTL838X_VLAN_PROFILE(profile));

	/* RTL8380 and RTL8390 use an index into the portmask table to set the
	 * unknown multicast portmask, setup a default at a safe location
	 * On RTL93XX, the portmask is directly set in the profile,
	 * see e.g. rtl9300_vlan_profile_setup
	 */
	rtl838x_write_mcast_pmask(UNKNOWN_MC_PMASK, 0x1fffffff);
}

static void rtl838x_l2_learning_setup(void)
{
	/* Set portmask for broadcast traffic and unknown unicast address flooding
	 * to the reserved entry in the portmask table used also for
	 * multicast flooding */
	sw_w32(UNKNOWN_MC_PMASK << 12 | UNKNOWN_MC_PMASK, RTL838X_L2_FLD_PMSK);

	/* Enable learning constraint system-wide (bit 0), per-port (bit 1)
	 * and per vlan (bit 2) */
	sw_w32(0x7, RTL838X_L2_LRN_CONSTRT_EN);

	// Limit learning to maximum: 16k entries, after that just flood (bits 0-1)
	sw_w32((0x3fff << 2) | 0, RTL838X_L2_LRN_CONSTRT);

	// Do not trap ARP packets to CPU_PORT
	sw_w32(0, RTL838X_SPCL_TRAP_ARP_CTRL);
}

static void rtl838x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
{
	int i;
	u32 cmd = 1 << 15 /* Execute cmd */
		| 1 << 14 /* Read */
		| 2 << 12 /* Table type 0b10 */
		| (msti & 0xfff);
	priv->r->exec_tbl0_cmd(cmd);

	for (i = 0; i < 2; i++)
		port_state[i] = sw_r32(priv->r->tbl_access_data_0(i));
}

static void rtl838x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
{
	int i;
	u32 cmd = 1 << 15 /* Execute cmd */
		| 0 << 14 /* Write */
		| 2 << 12 /* Table type 0b10 */
		| (msti & 0xfff);

	for (i = 0; i < 2; i++)
		sw_w32(port_state[i], priv->r->tbl_access_data_0(i));
	priv->r->exec_tbl0_cmd(cmd);
}

u64 rtl838x_traffic_get(int source)
{
	return rtl838x_get_port_reg(rtl838x_port_iso_ctrl(source));
}

void rtl838x_traffic_set(int source, u64 dest_matrix)
{
	rtl838x_set_port_reg(dest_matrix, rtl838x_port_iso_ctrl(source));
}

void rtl838x_traffic_enable(int source, int dest)
{
	rtl838x_mask_port_reg(0, BIT(dest), rtl838x_port_iso_ctrl(source));
}

void rtl838x_traffic_disable(int source, int dest)
{
	rtl838x_mask_port_reg(BIT(dest), 0, rtl838x_port_iso_ctrl(source));
}

/*
 * Enables or disables the EEE/EEEP capability of a port
 */
static void rtl838x_port_eee_set(struct rtl838x_switch_priv *priv, int port, bool enable)
{
	u32 v;

	// This works only for Ethernet ports, and on the RTL838X, ports from 24 are SFP
	if (port >= 24)
		return;

	pr_debug("In %s: setting port %d to %d\n", __func__, port, enable);
	v = enable ? 0x3 : 0x0;

	// Set EEE state for 100 (bit 9) & 1000MBit (bit 10)
	sw_w32_mask(0x3 << 9, v << 9, priv->r->mac_force_mode_ctrl(port));

	// Set TX/RX EEE state
	if (enable) {
		sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_TX_EN);
		sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_RX_EN);
	} else {
		sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_TX_EN);
		sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_RX_EN);
	}
	priv->ports[port].eee_enabled = enable;
}


/*
 * Get EEE own capabilities and negotiation result
 */
static int rtl838x_eee_port_ability(struct rtl838x_switch_priv *priv,
				    struct ethtool_eee *e, int port)
{
	u64 link;

	if (port >= 24)
		return 0;

	link = rtl839x_get_port_reg_le(RTL838X_MAC_LINK_STS);
	if (!(link & BIT(port)))
		return 0;

	if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(9))
		e->advertised |= ADVERTISED_100baseT_Full;

	if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(10))
		e->advertised |= ADVERTISED_1000baseT_Full;

	if (sw_r32(RTL838X_MAC_EEE_ABLTY) & BIT(port)) {
		e->lp_advertised = ADVERTISED_100baseT_Full;
		e->lp_advertised |= ADVERTISED_1000baseT_Full;
		return 1;
	}

	return 0;
}

static void rtl838x_init_eee(struct rtl838x_switch_priv *priv, bool enable)
{
	int i;

	pr_info("Setting up EEE, state: %d\n", enable);
	sw_w32_mask(0x4, 0, RTL838X_SMI_GLB_CTRL);

	/* Set timers for EEE */
	sw_w32(0x5001411, RTL838X_EEE_TX_TIMER_GIGA_CTRL);
	sw_w32(0x5001417, RTL838X_EEE_TX_TIMER_GELITE_CTRL);

	// Enable EEE MAC support on ports
	for (i = 0; i < priv->cpu_port; i++) {
		if (priv->ports[i].phy)
			rtl838x_port_eee_set(priv, i, enable);
	}
	priv->eee_enabled = enable;
}

static void rtl838x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index)
{
	int block = index / PIE_BLOCK_SIZE;
	u32 block_state = sw_r32(RTL838X_ACL_BLK_LOOKUP_CTRL);

	// Make sure rule-lookup is enabled in the block
	if (!(block_state & BIT(block)))
		sw_w32(block_state | BIT(block), RTL838X_ACL_BLK_LOOKUP_CTRL);
}

static void rtl838x_pie_rule_del(struct rtl838x_switch_priv *priv, int index_from, int index_to)
{
	int block_from = index_from / PIE_BLOCK_SIZE;
	int block_to = index_to / PIE_BLOCK_SIZE;
	u32 v = (index_from << 1)| (index_to << 12 ) | BIT(0);
	int block;
	u32 block_state;

	pr_debug("%s: from %d to %d\n", __func__, index_from, index_to);
	mutex_lock(&priv->reg_mutex);

	// Remember currently active blocks
	block_state = sw_r32(RTL838X_ACL_BLK_LOOKUP_CTRL);

	// Make sure rule-lookup is disabled in the relevant blocks
	for (block = block_from; block <= block_to; block++) {
		if (block_state & BIT(block))
			sw_w32(block_state & (~BIT(block)), RTL838X_ACL_BLK_LOOKUP_CTRL);
	}

	// Write from-to and execute bit into control register
	sw_w32(v, RTL838X_ACL_CLR_CTRL);

	// Wait until command has completed
	do {
	} while (sw_r32(RTL838X_ACL_CLR_CTRL) & BIT(0));

	// Re-enable rule lookup
	for (block = block_from; block <= block_to; block++) {
		if (!(block_state & BIT(block)))
			sw_w32(block_state | BIT(block), RTL838X_ACL_BLK_LOOKUP_CTRL);
	}

	mutex_unlock(&priv->reg_mutex);
}

/*
 * Reads the intermediate representation of the templated match-fields of the
 * PIE rule in the pie_rule structure and fills in the raw data fields in the
 * raw register space r[].
 * The register space configuration size is identical for the RTL8380/90 and RTL9300,
 * however the RTL9310 has 2 more registers / fields and the physical field-ids
 * are specific to every platform.
 */
static void rtl838x_write_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
{
	int i;
	enum template_field_id field_type;
	u16 data, data_m;

	for (i = 0; i < N_FIXED_FIELDS; i++) {
		field_type = t[i];
		data = data_m = 0;

		switch (field_type) {
		case TEMPLATE_FIELD_SPM0:
			data = pr->spm;
			data_m = pr->spm_m;
			break;
		case TEMPLATE_FIELD_SPM1:
			data = pr->spm >> 16;
			data_m = pr->spm_m >> 16;
			break;
		case TEMPLATE_FIELD_OTAG:
			data = pr->otag;
			data_m = pr->otag_m;
			break;
		case TEMPLATE_FIELD_SMAC0:
			data = pr->smac[4];
			data = (data << 8) | pr->smac[5];
			data_m = pr->smac_m[4];
			data_m = (data_m << 8) | pr->smac_m[5];
			break;
		case TEMPLATE_FIELD_SMAC1:
			data = pr->smac[2];
			data = (data << 8) | pr->smac[3];
			data_m = pr->smac_m[2];
			data_m = (data_m << 8) | pr->smac_m[3];
			break;
		case TEMPLATE_FIELD_SMAC2:
			data = pr->smac[0];
			data = (data << 8) | pr->smac[1];
			data_m = pr->smac_m[0];
			data_m = (data_m << 8) | pr->smac_m[1];
			break;
		case TEMPLATE_FIELD_DMAC0:
			data = pr->dmac[4];
			data = (data << 8) | pr->dmac[5];
			data_m = pr->dmac_m[4];
			data_m = (data_m << 8) | pr->dmac_m[5];
			break;
		case TEMPLATE_FIELD_DMAC1:
			data = pr->dmac[2];
			data = (data << 8) | pr->dmac[3];
			data_m = pr->dmac_m[2];
			data_m = (data_m << 8) | pr->dmac_m[3];
			break;
		case TEMPLATE_FIELD_DMAC2:
			data = pr->dmac[0];
			data = (data << 8) | pr->dmac[1];
			data_m = pr->dmac_m[0];
			data_m = (data_m << 8) | pr->dmac_m[1];
			break;
		case TEMPLATE_FIELD_ETHERTYPE:
			data = pr->ethertype;
			data_m = pr->ethertype_m;
			break;
		case TEMPLATE_FIELD_ITAG:
			data = pr->itag;
			data_m = pr->itag_m;
			break;
		case TEMPLATE_FIELD_RANGE_CHK:
			data = pr->field_range_check;
			data_m = pr->field_range_check_m;
			break;
		case TEMPLATE_FIELD_SIP0:
			if (pr->is_ipv6) {
				data = pr->sip6.s6_addr16[7];
				data_m = pr->sip6_m.s6_addr16[7];
			} else {
				data = pr->sip;
				data_m = pr->sip_m;
			}
			break;
		case TEMPLATE_FIELD_SIP1:
			if (pr->is_ipv6) {
				data = pr->sip6.s6_addr16[6];
				data_m = pr->sip6_m.s6_addr16[6];
			} else {
				data = pr->sip >> 16;
				data_m = pr->sip_m >> 16;
			}
			break;

		case TEMPLATE_FIELD_SIP2:
		case TEMPLATE_FIELD_SIP3:
		case TEMPLATE_FIELD_SIP4:
		case TEMPLATE_FIELD_SIP5:
		case TEMPLATE_FIELD_SIP6:
		case TEMPLATE_FIELD_SIP7:
			data = pr->sip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
			data_m = pr->sip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
			break;

		case TEMPLATE_FIELD_DIP0:
			if (pr->is_ipv6) {
				data = pr->dip6.s6_addr16[7];
				data_m = pr->dip6_m.s6_addr16[7];
			} else {
				data = pr->dip;
				data_m = pr->dip_m;
			}
			break;

		case TEMPLATE_FIELD_DIP1:
			if (pr->is_ipv6) {
				data = pr->dip6.s6_addr16[6];
				data_m = pr->dip6_m.s6_addr16[6];
			} else {
				data = pr->dip >> 16;
				data_m = pr->dip_m >> 16;
			}
			break;

		case TEMPLATE_FIELD_DIP2:
		case TEMPLATE_FIELD_DIP3:
		case TEMPLATE_FIELD_DIP4:
		case TEMPLATE_FIELD_DIP5:
		case TEMPLATE_FIELD_DIP6:
		case TEMPLATE_FIELD_DIP7:
			data = pr->dip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
			data_m = pr->dip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
			break;

		case TEMPLATE_FIELD_IP_TOS_PROTO:
			data = pr->tos_proto;
			data_m = pr->tos_proto_m;
			break;
		case TEMPLATE_FIELD_L4_SPORT:
			data = pr->sport;
			data_m = pr->sport_m;
			break;
		case TEMPLATE_FIELD_L4_DPORT:
			data = pr->dport;
			data_m = pr->dport_m;
			break;
		case TEMPLATE_FIELD_ICMP_IGMP:
			data = pr->icmp_igmp;
			data_m = pr->icmp_igmp_m;
			break;
		default:
			pr_info("%s: unknown field %d\n", __func__, field_type);
			continue;
		}
		if (!(i % 2)) {
			r[5 - i / 2] = data;
			r[12 - i / 2] = data_m;
		} else {
			r[5 - i / 2] |= ((u32)data) << 16;
			r[12 - i / 2] |= ((u32)data_m) << 16;
		}
	}
}

/*
 * Creates the intermediate representation of the templated match-fields of the
 * PIE rule in the pie_rule structure by reading the raw data fields in the
 * raw register space r[].
 * The register space configuration size is identical for the RTL8380/90 and RTL9300,
 * however the RTL9310 has 2 more registers / fields and the physical field-ids
 */
static void rtl838x_read_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
{
	int i;
	enum template_field_id field_type;
	u16 data, data_m;

	for (i = 0; i < N_FIXED_FIELDS; i++) {
		field_type = t[i];
		if (!(i % 2)) {
			data = r[5 - i / 2];
			data_m = r[12 - i / 2];
		} else {
			data = r[5 - i / 2] >> 16;
			data_m = r[12 - i / 2] >> 16;
		}

		switch (field_type) {
		case TEMPLATE_FIELD_SPM0:
			pr->spm = (pr->spn << 16) | data;
			pr->spm_m = (pr->spn << 16) | data_m;
			break;
		case TEMPLATE_FIELD_SPM1:
			pr->spm = data;
			pr->spm_m = data_m;
			break;
		case TEMPLATE_FIELD_OTAG:
			pr->otag = data;
			pr->otag_m = data_m;
			break;
		case TEMPLATE_FIELD_SMAC0:
			pr->smac[4] = data >> 8;
			pr->smac[5] = data;
			pr->smac_m[4] = data >> 8;
			pr->smac_m[5] = data;
			break;
		case TEMPLATE_FIELD_SMAC1:
			pr->smac[2] = data >> 8;
			pr->smac[3] = data;
			pr->smac_m[2] = data >> 8;
			pr->smac_m[3] = data;
			break;
		case TEMPLATE_FIELD_SMAC2:
			pr->smac[0] = data >> 8;
			pr->smac[1] = data;
			pr->smac_m[0] = data >> 8;
			pr->smac_m[1] = data;
			break;
		case TEMPLATE_FIELD_DMAC0:
			pr->dmac[4] = data >> 8;
			pr->dmac[5] = data;
			pr->dmac_m[4] = data >> 8;
			pr->dmac_m[5] = data;
			break;
		case TEMPLATE_FIELD_DMAC1:
			pr->dmac[2] = data >> 8;
			pr->dmac[3] = data;
			pr->dmac_m[2] = data >> 8;
			pr->dmac_m[3] = data;
			break;
		case TEMPLATE_FIELD_DMAC2:
			pr->dmac[0] = data >> 8;
			pr->dmac[1] = data;
			pr->dmac_m[0] = data >> 8;
			pr->dmac_m[1] = data;
			break;
		case TEMPLATE_FIELD_ETHERTYPE:
			pr->ethertype = data;
			pr->ethertype_m = data_m;
			break;
		case TEMPLATE_FIELD_ITAG:
			pr->itag = data;
			pr->itag_m = data_m;
			break;
		case TEMPLATE_FIELD_RANGE_CHK:
			pr->field_range_check = data;
			pr->field_range_check_m = data_m;
			break;
		case TEMPLATE_FIELD_SIP0:
			pr->sip = data;
			pr->sip_m = data_m;
			break;
		case TEMPLATE_FIELD_SIP1:
			pr->sip = (pr->sip << 16) | data;
			pr->sip_m = (pr->sip << 16) | data_m;
			break;
		case TEMPLATE_FIELD_SIP2:
			pr->is_ipv6 = true;
			// Make use of limitiations on the position of the match values
			ipv6_addr_set(&pr->sip6, pr->sip, r[5 - i / 2],
				      r[4 - i / 2], r[3 - i / 2]);
			ipv6_addr_set(&pr->sip6_m, pr->sip_m, r[5 - i / 2],
				      r[4 - i / 2], r[3 - i / 2]);
		case TEMPLATE_FIELD_SIP3:
		case TEMPLATE_FIELD_SIP4:
		case TEMPLATE_FIELD_SIP5:
		case TEMPLATE_FIELD_SIP6:
		case TEMPLATE_FIELD_SIP7:
			break;

		case TEMPLATE_FIELD_DIP0:
			pr->dip = data;
			pr->dip_m = data_m;
			break;
		case TEMPLATE_FIELD_DIP1:
			pr->dip = (pr->dip << 16) | data;
			pr->dip_m = (pr->dip << 16) | data_m;
			break;
		case TEMPLATE_FIELD_DIP2:
			pr->is_ipv6 = true;
			ipv6_addr_set(&pr->dip6, pr->dip, r[5 - i / 2],
				      r[4 - i / 2], r[3 - i / 2]);
			ipv6_addr_set(&pr->dip6_m, pr->dip_m, r[5 - i / 2],
				      r[4 - i / 2], r[3 - i / 2]);
		case TEMPLATE_FIELD_DIP3:
		case TEMPLATE_FIELD_DIP4:
		case TEMPLATE_FIELD_DIP5:
		case TEMPLATE_FIELD_DIP6:
		case TEMPLATE_FIELD_DIP7:
			break;
		case TEMPLATE_FIELD_IP_TOS_PROTO:
			pr->tos_proto = data;
			pr->tos_proto_m = data_m;
			break;
		case TEMPLATE_FIELD_L4_SPORT:
			pr->sport = data;
			pr->sport_m = data_m;
			break;
		case TEMPLATE_FIELD_L4_DPORT:
			pr->dport = data;
			pr->dport_m = data_m;
			break;
		case TEMPLATE_FIELD_ICMP_IGMP:
			pr->icmp_igmp = data;
			pr->icmp_igmp_m = data_m;
			break;
		default:
			pr_info("%s: unknown field %d\n", __func__, field_type);
		}
	}
}

static void rtl838x_read_pie_fixed_fields(u32 r[], struct pie_rule *pr)
{
	pr->spmmask_fix = (r[6] >> 22) & 0x3;
	pr->spn = (r[6] >> 16) & 0x3f;
	pr->mgnt_vlan = (r[6] >> 15) & 1;
	pr->dmac_hit_sw = (r[6] >> 14) & 1;
	pr->not_first_frag = (r[6] >> 13) & 1;
	pr->frame_type_l4 = (r[6] >> 10) & 7;
	pr->frame_type = (r[6] >> 8) & 3;
	pr->otag_fmt = (r[6] >> 7) & 1;
	pr->itag_fmt = (r[6] >> 6) & 1;
	pr->otag_exist = (r[6] >> 5) & 1;
	pr->itag_exist = (r[6] >> 4) & 1;
	pr->frame_type_l2 = (r[6] >> 2) & 3;
	pr->tid = r[6] & 3;

	pr->spmmask_fix_m = (r[13] >> 22) & 0x3;
	pr->spn_m = (r[13] >> 16) & 0x3f;
	pr->mgnt_vlan_m = (r[13] >> 15) & 1;
	pr->dmac_hit_sw_m = (r[13] >> 14) & 1;
	pr->not_first_frag_m = (r[13] >> 13) & 1;
	pr->frame_type_l4_m = (r[13] >> 10) & 7;
	pr->frame_type_m = (r[13] >> 8) & 3;
	pr->otag_fmt_m = (r[13] >> 7) & 1;
	pr->itag_fmt_m = (r[13] >> 6) & 1;
	pr->otag_exist_m = (r[13] >> 5) & 1;
	pr->itag_exist_m = (r[13] >> 4) & 1;
	pr->frame_type_l2_m = (r[13] >> 2) & 3;
	pr->tid_m = r[13] & 3;

	pr->valid = r[14] & BIT(31);
	pr->cond_not = r[14] & BIT(30);
	pr->cond_and1 = r[14] & BIT(29);
	pr->cond_and2 = r[14] & BIT(28);
	pr->ivalid = r[14] & BIT(27);

	pr->drop = (r[17] >> 14) & 3;
	pr->fwd_sel = r[17] & BIT(13);
	pr->ovid_sel = r[17] & BIT(12);
	pr->ivid_sel = r[17] & BIT(11);
	pr->flt_sel = r[17] & BIT(10);
	pr->log_sel = r[17] & BIT(9);
	pr->rmk_sel = r[17] & BIT(8);
	pr->meter_sel = r[17] & BIT(7);
	pr->tagst_sel = r[17] & BIT(6);
	pr->mir_sel = r[17] & BIT(5);
	pr->nopri_sel = r[17] & BIT(4);
	pr->cpupri_sel = r[17] & BIT(3);
	pr->otpid_sel = r[17] & BIT(2);
	pr->itpid_sel = r[17] & BIT(1);
	pr->shaper_sel = r[17] & BIT(0);
}

static void rtl838x_write_pie_fixed_fields(u32 r[],  struct pie_rule *pr)
{
	r[6] = ((u32) (pr->spmmask_fix & 0x3)) << 22;
	r[6] |= ((u32) (pr->spn & 0x3f)) << 16;
	r[6] |= pr->mgnt_vlan ? BIT(15) : 0;
	r[6] |= pr->dmac_hit_sw ? BIT(14) : 0;
	r[6] |= pr->not_first_frag ? BIT(13) : 0;
	r[6] |= ((u32) (pr->frame_type_l4 & 0x7)) << 10;
	r[6] |= ((u32) (pr->frame_type & 0x3)) << 8;
	r[6] |= pr->otag_fmt ? BIT(7) : 0;
	r[6] |= pr->itag_fmt ? BIT(6) : 0;
	r[6] |= pr->otag_exist ? BIT(5) : 0;
	r[6] |= pr->itag_exist ? BIT(4) : 0;
	r[6] |= ((u32) (pr->frame_type_l2 & 0x3)) << 2;
	r[6] |= ((u32) (pr->tid & 0x3));

	r[13] = ((u32) (pr->spmmask_fix_m & 0x3)) << 22;
	r[13] |= ((u32) (pr->spn_m & 0x3f)) << 16;
	r[13] |= pr->mgnt_vlan_m ? BIT(15) : 0;
	r[13] |= pr->dmac_hit_sw_m ? BIT(14) : 0;
	r[13] |= pr->not_first_frag_m ? BIT(13) : 0;
	r[13] |= ((u32) (pr->frame_type_l4_m & 0x7)) << 10;
	r[13] |= ((u32) (pr->frame_type_m & 0x3)) << 8;
	r[13] |= pr->otag_fmt_m ? BIT(7) : 0;
	r[13] |= pr->itag_fmt_m ? BIT(6) : 0;
	r[13] |= pr->otag_exist_m ? BIT(5) : 0;
	r[13] |= pr->itag_exist_m ? BIT(4) : 0;
	r[13] |= ((u32) (pr->frame_type_l2_m & 0x3)) << 2;
	r[13] |= ((u32) (pr->tid_m & 0x3));

	r[14] = pr->valid ? BIT(31) : 0;
	r[14] |= pr->cond_not ? BIT(30) : 0;
	r[14] |= pr->cond_and1 ? BIT(29) : 0;
	r[14] |= pr->cond_and2 ? BIT(28) : 0;
	r[14] |= pr->ivalid ? BIT(27) : 0;

	if (pr->drop)
		r[17] = 0x1 << 14;	// Standard drop action
	else
		r[17] = 0;
	r[17] |= pr->fwd_sel ? BIT(13) : 0;
	r[17] |= pr->ovid_sel ? BIT(12) : 0;
	r[17] |= pr->ivid_sel ? BIT(11) : 0;
	r[17] |= pr->flt_sel ? BIT(10) : 0;
	r[17] |= pr->log_sel ? BIT(9) : 0;
	r[17] |= pr->rmk_sel ? BIT(8) : 0;
	r[17] |= pr->meter_sel ? BIT(7) : 0;
	r[17] |= pr->tagst_sel ? BIT(6) : 0;
	r[17] |= pr->mir_sel ? BIT(5) : 0;
	r[17] |= pr->nopri_sel ? BIT(4) : 0;
	r[17] |= pr->cpupri_sel ? BIT(3) : 0;
	r[17] |= pr->otpid_sel ? BIT(2) : 0;
	r[17] |= pr->itpid_sel ? BIT(1) : 0;
	r[17] |= pr->shaper_sel ? BIT(0) : 0;
}

static int rtl838x_write_pie_action(u32 r[],  struct pie_rule *pr)
{
	u16 *aif = (u16 *)&r[17];
	u16 data;
	int fields_used = 0;

	aif--;

	pr_debug("%s, at %08x\n", __func__, (u32)aif);
	/* Multiple actions can be linked to a match of a PIE rule,
	 * they have different precedence depending on their type and this precedence
	 * defines which Action Information Field (0-4) in the IACL table stores
	 * the additional data of the action (like e.g. the port number a packet is
	 * forwarded to) */
	// TODO: count bits in selectors to limit to a maximum number of actions
	if (pr->fwd_sel) { // Forwarding action
		data = pr->fwd_act << 13;
		data |= pr->fwd_data;
		data |= pr->bypass_all ? BIT(12) : 0;
		data |= pr->bypass_ibc_sc ? BIT(11) : 0;
		data |= pr->bypass_igr_stp ? BIT(10) : 0;
		*aif-- = data;
		fields_used++;
	}

	if (pr->ovid_sel) { // Outer VID action
		data = (pr->ovid_act & 0x3) << 12;
		data |= pr->ovid_data;
		*aif-- = data;
		fields_used++;
	}

	if (pr->ivid_sel) { // Inner VID action
		data = (pr->ivid_act & 0x3) << 12;
		data |= pr->ivid_data;
		*aif-- = data;
		fields_used++;
	}

	if (pr->flt_sel) { // Filter action
		*aif-- = pr->flt_data;
		fields_used++;
	}

	if (pr->log_sel) { // Log action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->log_data;
		fields_used++;
	}

	if (pr->rmk_sel) { // Remark action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->rmk_data;
		fields_used++;
	}

	if (pr->meter_sel) { // Meter action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->meter_data;
		fields_used++;
	}

	if (pr->tagst_sel) { // Egress Tag Status action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->tagst_data;
		fields_used++;
	}

	if (pr->mir_sel) { // Mirror action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->mir_data;
		fields_used++;
	}

	if (pr->nopri_sel) { // Normal Priority action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->nopri_data;
		fields_used++;
	}

	if (pr->cpupri_sel) { // CPU Priority action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->nopri_data;
		fields_used++;
	}

	if (pr->otpid_sel) { // OTPID action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->otpid_data;
		fields_used++;
	}

	if (pr->itpid_sel) { // ITPID action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->itpid_data;
		fields_used++;
	}

	if (pr->shaper_sel) { // Traffic shaper action
		if (fields_used >= 4)
			return -1;
		*aif-- = pr->shaper_data;
		fields_used++;
	}

	return 0;
}

static void rtl838x_read_pie_action(u32 r[],  struct pie_rule *pr)
{
	u16 *aif = (u16 *)&r[17];

	aif--;

	pr_debug("%s, at %08x\n", __func__, (u32)aif);
	if (pr->drop)
		pr_debug("%s: Action Drop: %d", __func__, pr->drop);

	if (pr->fwd_sel){ // Forwarding action
		pr->fwd_act = *aif >> 13;
		pr->fwd_data = *aif--;
		pr->bypass_all = pr->fwd_data & BIT(12);
		pr->bypass_ibc_sc = pr->fwd_data & BIT(11);
		pr->bypass_igr_stp = pr->fwd_data & BIT(10);
		if (pr->bypass_all || pr->bypass_ibc_sc || pr->bypass_igr_stp)
			pr->bypass_sel = true;
	}
	if (pr->ovid_sel) // Outer VID action
		pr->ovid_data = *aif--;
	if (pr->ivid_sel) // Inner VID action
		pr->ivid_data = *aif--;
	if (pr->flt_sel) // Filter action
		pr->flt_data = *aif--;
	if (pr->log_sel) // Log action
		pr->log_data = *aif--;
	if (pr->rmk_sel) // Remark action
		pr->rmk_data = *aif--;
	if (pr->meter_sel) // Meter action
		pr->meter_data = *aif--;
	if (pr->tagst_sel) // Egress Tag Status action
		pr->tagst_data = *aif--;
	if (pr->mir_sel) // Mirror action
		pr->mir_data = *aif--;
	if (pr->nopri_sel) // Normal Priority action
		pr->nopri_data = *aif--;
	if (pr->cpupri_sel) // CPU Priority action
		pr->nopri_data = *aif--;
	if (pr->otpid_sel) // OTPID action
		pr->otpid_data = *aif--;
	if (pr->itpid_sel) // ITPID action
		pr->itpid_data = *aif--;
	if (pr->shaper_sel) // Traffic shaper action
		pr->shaper_data = *aif--;
}

static void rtl838x_pie_rule_dump_raw(u32 r[])
{
	pr_info("Raw IACL table entry:\n");
	pr_info("Match  : %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5]);
	pr_info("Fixed  : %08x\n", r[6]);
	pr_info("Match M: %08x %08x %08x %08x %08x %08x\n", r[7], r[8], r[9], r[10], r[11], r[12]);
	pr_info("Fixed M: %08x\n", r[13]);
	pr_info("AIF    : %08x %08x %08x\n", r[14], r[15], r[16]);
	pr_info("Sel    : %08x\n", r[17]);
}

static void rtl838x_pie_rule_dump(struct  pie_rule *pr)
{
	pr_info("Drop: %d, fwd: %d, ovid: %d, ivid: %d, flt: %d, log: %d, rmk: %d, meter: %d tagst: %d, mir: %d, nopri: %d, cpupri: %d, otpid: %d, itpid: %d, shape: %d\n",
		pr->drop, pr->fwd_sel, pr->ovid_sel, pr->ivid_sel, pr->flt_sel, pr->log_sel, pr->rmk_sel, pr->log_sel, pr->tagst_sel, pr->mir_sel, pr->nopri_sel,
		pr->cpupri_sel, pr->otpid_sel, pr->itpid_sel, pr->shaper_sel);
	if (pr->fwd_sel)
		pr_info("FWD: %08x\n", pr->fwd_data);
	pr_info("TID: %x, %x\n", pr->tid, pr->tid_m);
}

static int rtl838x_pie_rule_read(struct rtl838x_switch_priv *priv, int idx, struct  pie_rule *pr)
{
	// Read IACL table (1) via register 0
	struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 1);
	u32 r[18];
	int i;
	int block = idx / PIE_BLOCK_SIZE;
	u32 t_select = sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block));

	memset(pr, 0, sizeof(*pr));
	rtl_table_read(q, idx);
	for (i = 0; i < 18; i++)
		r[i] = sw_r32(rtl_table_data(q, i));

	rtl_table_release(q);

	rtl838x_read_pie_fixed_fields(r, pr);
	if (!pr->valid)
		return 0;

	pr_info("%s: template_selectors %08x, tid: %d\n", __func__, t_select, pr->tid);
	rtl838x_pie_rule_dump_raw(r);

	rtl838x_read_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);

	rtl838x_read_pie_action(r, pr);

	return 0;
}

static int rtl838x_pie_rule_write(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
{
	// Access IACL table (1) via register 0
	struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 1);
	u32 r[18];
	int i, err = 0;
	int block = idx / PIE_BLOCK_SIZE;
	u32 t_select = sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block));

	pr_debug("%s: %d, t_select: %08x\n", __func__, idx, t_select);

	for (i = 0; i < 18; i++)
		r[i] = 0;

	if (!pr->valid)
		goto err_out;

	rtl838x_write_pie_fixed_fields(r, pr);

	pr_debug("%s: template %d\n", __func__, (t_select >> (pr->tid * 3)) & 0x7);
	rtl838x_write_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);

	if (rtl838x_write_pie_action(r, pr)) {
		pr_err("Rule actions too complex\n");
		goto err_out;
	}

//	rtl838x_pie_rule_dump_raw(r);

	for (i = 0; i < 18; i++)
		sw_w32(r[i], rtl_table_data(q, i));

err_out:
	rtl_table_write(q, idx);
	rtl_table_release(q);

	return err;
}

static bool rtl838x_pie_templ_has(int t, enum template_field_id field_type)
{
	int i;
	enum template_field_id ft;

	for (i = 0; i < N_FIXED_FIELDS; i++) {
		ft = fixed_templates[t][i];
		if (field_type == ft)
			return true;
	}

	return false;
}

static int rtl838x_pie_verify_template(struct rtl838x_switch_priv *priv,
				       struct pie_rule *pr, int t, int block)
{
	int i;

	if (!pr->is_ipv6 && pr->sip_m && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SIP0))
		return -1;

	if (!pr->is_ipv6 && pr->dip_m && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DIP0))
		return -1;

	if (pr->is_ipv6) {
		if ((pr->sip6_m.s6_addr32[0] || pr->sip6_m.s6_addr32[1]
			|| pr->sip6_m.s6_addr32[2] || pr->sip6_m.s6_addr32[3])
			&& !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SIP2))
			return -1;
		if ((pr->dip6_m.s6_addr32[0] || pr->dip6_m.s6_addr32[1]
			|| pr->dip6_m.s6_addr32[2] || pr->dip6_m.s6_addr32[3])
			&& !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DIP2))
			return -1;
	}

	if (ether_addr_to_u64(pr->smac) && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SMAC0))
		return -1;

	if (ether_addr_to_u64(pr->dmac) && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DMAC0))
		return -1;

	// TODO: Check more

	i = find_first_zero_bit(&priv->pie_use_bm[block * 4], PIE_BLOCK_SIZE);

	if (i >= PIE_BLOCK_SIZE)
		return -1;

	return i + PIE_BLOCK_SIZE * block;
}

static int rtl838x_pie_rule_add(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
{
	int idx, block, j, t;

	pr_debug("In %s\n", __func__);

	mutex_lock(&priv->pie_mutex);

	for (block = 0; block < priv->n_pie_blocks; block++) {
		for (j = 0; j < 3; j++) {
			t = (sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block)) >> (j * 3)) & 0x7;
			pr_debug("Testing block %d, template %d, template id %d\n", block, j, t);
			idx = rtl838x_pie_verify_template(priv, pr, t, block);
			if (idx >= 0)
				break;
		}
		if (j < 3)
			break;
	}

	if (block >= priv->n_pie_blocks) {
		mutex_unlock(&priv->pie_mutex);
		return -EOPNOTSUPP;
	}

	pr_debug("Using block: %d, index %d, template-id %d\n", block, idx, j);
	set_bit(idx, priv->pie_use_bm);

	pr->valid = true;
	pr->tid = j;  // Mapped to template number
	pr->tid_m = 0x3;
	pr->id = idx;

	rtl838x_pie_lookup_enable(priv, idx);
	rtl838x_pie_rule_write(priv, idx, pr);

	mutex_unlock(&priv->pie_mutex);
	return 0;
}

static void rtl838x_pie_rule_rm(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
{
	int idx = pr->id;

	rtl838x_pie_rule_del(priv, idx, idx);
	clear_bit(idx, priv->pie_use_bm);
}

/*
 * Initializes the Packet Inspection Engine:
 * powers it up, enables default matching templates for all blocks
 * and clears all rules possibly installed by u-boot
 */
static void rtl838x_pie_init(struct rtl838x_switch_priv *priv)
{
	int i;
	u32 template_selectors;

	mutex_init(&priv->pie_mutex);

	// Enable ACL lookup on all ports, including CPU_PORT
	for (i = 0; i <= priv->cpu_port; i++)
		sw_w32(1, RTL838X_ACL_PORT_LOOKUP_CTRL(i));

	// Power on all PIE blocks
	for (i = 0; i < priv->n_pie_blocks; i++)
		sw_w32_mask(0, BIT(i), RTL838X_ACL_BLK_PWR_CTRL);

	// Include IPG in metering
	sw_w32(1, RTL838X_METER_GLB_CTRL);

	// Delete all present rules
	rtl838x_pie_rule_del(priv, 0, priv->n_pie_blocks * PIE_BLOCK_SIZE - 1);

	// Routing bypasses source port filter: disable write-protection, first
	sw_w32_mask(0, 3, RTL838X_INT_RW_CTRL);
	sw_w32_mask(0, 1, RTL838X_DMY_REG27);
	sw_w32_mask(3, 0, RTL838X_INT_RW_CTRL);

	// Enable predefined templates 0, 1 and 2 for even blocks
	template_selectors = 0 | (1 << 3) | (2 << 6);
	for (i = 0; i < 6; i += 2)
		sw_w32(template_selectors, RTL838X_ACL_BLK_TMPLTE_CTRL(i));

	// Enable predefined templates 0, 3 and 4 (IPv6 support) for odd blocks
	template_selectors = 0 | (3 << 3) | (4 << 6);
	for (i = 1; i < priv->n_pie_blocks; i += 2)
		sw_w32(template_selectors, RTL838X_ACL_BLK_TMPLTE_CTRL(i));

	// Group each pair of physical blocks together to a logical block
	sw_w32(0b10101010101, RTL838X_ACL_BLK_GROUP_CTRL);
}

static u32 rtl838x_packet_cntr_read(int counter)
{
	u32 v;

	// Read LOG table (3) via register RTL8380_TBL_0
	struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 3);

	pr_debug("In %s, id %d\n", __func__, counter);
	rtl_table_read(r, counter / 2);

	pr_debug("Registers: %08x %08x\n",
		sw_r32(rtl_table_data(r, 0)), sw_r32(rtl_table_data(r, 1)));
	// The table has a size of 2 registers
	if (counter % 2)
		v = sw_r32(rtl_table_data(r, 0));
	else
		v = sw_r32(rtl_table_data(r, 1));

	rtl_table_release(r);

	return v;
}

static void rtl838x_packet_cntr_clear(int counter)
{
	// Access LOG table (3) via register RTL8380_TBL_0
	struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 3);

	pr_debug("In %s, id %d\n", __func__, counter);
	// The table has a size of 2 registers
	if (counter % 2)
		sw_w32(0, rtl_table_data(r, 0));
	else
		sw_w32(0, rtl_table_data(r, 1));

	rtl_table_write(r, counter / 2);

	rtl_table_release(r);
}

static void rtl838x_route_read(int idx, struct rtl83xx_route *rt)
{
	// Read ROUTING table (2) via register RTL8380_TBL_1
	struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);

	pr_debug("In %s, id %d\n", __func__, idx);
	rtl_table_read(r, idx);

	// The table has a size of 2 registers
	rt->nh.gw = sw_r32(rtl_table_data(r, 0));
	rt->nh.gw <<= 32;
	rt->nh.gw |= sw_r32(rtl_table_data(r, 1));

	rtl_table_release(r);
}

static void rtl838x_route_write(int idx, struct rtl83xx_route *rt)
{
	// Access ROUTING table (2) via register RTL8380_TBL_1
	struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);

	pr_debug("In %s, id %d, gw: %016llx\n", __func__, idx, rt->nh.gw);
	sw_w32(rt->nh.gw >> 32, rtl_table_data(r, 0));
	sw_w32(rt->nh.gw, rtl_table_data(r, 1));
	rtl_table_write(r, idx);

	rtl_table_release(r);
}

static int rtl838x_l3_setup(struct rtl838x_switch_priv *priv)
{
	// Nothing to be done
	return 0;
}

const struct rtl838x_reg rtl838x_reg = {
	.mask_port_reg_be = rtl838x_mask_port_reg,
	.set_port_reg_be = rtl838x_set_port_reg,
	.get_port_reg_be = rtl838x_get_port_reg,
	.mask_port_reg_le = rtl838x_mask_port_reg,
	.set_port_reg_le = rtl838x_set_port_reg,
	.get_port_reg_le = rtl838x_get_port_reg,
	.stat_port_rst = RTL838X_STAT_PORT_RST,
	.stat_rst = RTL838X_STAT_RST,
	.stat_port_std_mib = RTL838X_STAT_PORT_STD_MIB,
	.port_iso_ctrl = rtl838x_port_iso_ctrl,
	.traffic_enable = rtl838x_traffic_enable,
	.traffic_disable = rtl838x_traffic_disable,
	.traffic_get = rtl838x_traffic_get,
	.traffic_set = rtl838x_traffic_set,
	.l2_ctrl_0 = RTL838X_L2_CTRL_0,
	.l2_ctrl_1 = RTL838X_L2_CTRL_1,
	.l2_port_aging_out = RTL838X_L2_PORT_AGING_OUT,
	.smi_poll_ctrl = RTL838X_SMI_POLL_CTRL,
	.l2_tbl_flush_ctrl = RTL838X_L2_TBL_FLUSH_CTRL,
	.exec_tbl0_cmd = rtl838x_exec_tbl0_cmd,
	.exec_tbl1_cmd = rtl838x_exec_tbl1_cmd,
	.tbl_access_data_0 = rtl838x_tbl_access_data_0,
	.isr_glb_src = RTL838X_ISR_GLB_SRC,
	.isr_port_link_sts_chg = RTL838X_ISR_PORT_LINK_STS_CHG,
	.imr_port_link_sts_chg = RTL838X_IMR_PORT_LINK_STS_CHG,
	.imr_glb = RTL838X_IMR_GLB,
	.vlan_tables_read = rtl838x_vlan_tables_read,
	.vlan_set_tagged = rtl838x_vlan_set_tagged,
	.vlan_set_untagged = rtl838x_vlan_set_untagged,
	.mac_force_mode_ctrl = rtl838x_mac_force_mode_ctrl,
	.vlan_profile_dump = rtl838x_vlan_profile_dump,
	.vlan_profile_setup = rtl838x_vlan_profile_setup,
	.vlan_fwd_on_inner = rtl838x_vlan_fwd_on_inner,
	.stp_get = rtl838x_stp_get,
	.stp_set = rtl838x_stp_set,
	.mac_port_ctrl = rtl838x_mac_port_ctrl,
	.l2_port_new_salrn = rtl838x_l2_port_new_salrn,
	.l2_port_new_sa_fwd = rtl838x_l2_port_new_sa_fwd,
	.mir_ctrl = RTL838X_MIR_CTRL,
	.mir_dpm = RTL838X_MIR_DPM_CTRL,
	.mir_spm = RTL838X_MIR_SPM_CTRL,
	.mac_link_sts = RTL838X_MAC_LINK_STS,
	.mac_link_dup_sts = RTL838X_MAC_LINK_DUP_STS,
	.mac_link_spd_sts = rtl838x_mac_link_spd_sts,
	.mac_rx_pause_sts = RTL838X_MAC_RX_PAUSE_STS,
	.mac_tx_pause_sts = RTL838X_MAC_TX_PAUSE_STS,
	.read_l2_entry_using_hash = rtl838x_read_l2_entry_using_hash,
	.write_l2_entry_using_hash = rtl838x_write_l2_entry_using_hash,
	.read_cam = rtl838x_read_cam,
	.write_cam = rtl838x_write_cam,
	.vlan_port_egr_filter = RTL838X_VLAN_PORT_EGR_FLTR,
	.vlan_port_igr_filter = RTL838X_VLAN_PORT_IGR_FLTR,
	.vlan_port_pb = RTL838X_VLAN_PORT_PB_VLAN,
	.vlan_port_tag_sts_ctrl = RTL838X_VLAN_PORT_TAG_STS_CTRL,
	.trk_mbr_ctr = rtl838x_trk_mbr_ctr,
	.rma_bpdu_fld_pmask = RTL838X_RMA_BPDU_FLD_PMSK,
	.spcl_trap_eapol_ctrl = RTL838X_SPCL_TRAP_EAPOL_CTRL,
	.init_eee = rtl838x_init_eee,
	.port_eee_set = rtl838x_port_eee_set,
	.eee_port_ability = rtl838x_eee_port_ability,
	.l2_hash_seed = rtl838x_l2_hash_seed, 
	.l2_hash_key = rtl838x_l2_hash_key,
	.read_mcast_pmask = rtl838x_read_mcast_pmask,
	.write_mcast_pmask = rtl838x_write_mcast_pmask,
	.pie_init = rtl838x_pie_init,
	.pie_rule_read = rtl838x_pie_rule_read,
	.pie_rule_write = rtl838x_pie_rule_write,
	.pie_rule_add = rtl838x_pie_rule_add,
	.pie_rule_rm = rtl838x_pie_rule_rm,
	.l2_learning_setup = rtl838x_l2_learning_setup,
	.packet_cntr_read = rtl838x_packet_cntr_read,
	.packet_cntr_clear = rtl838x_packet_cntr_clear,
	.route_read = rtl838x_route_read,
	.route_write = rtl838x_route_write,
	.l3_setup = rtl838x_l3_setup,
};

irqreturn_t rtl838x_switch_irq(int irq, void *dev_id)
{
	struct dsa_switch *ds = dev_id;
	u32 status = sw_r32(RTL838X_ISR_GLB_SRC);
	u32 ports = sw_r32(RTL838X_ISR_PORT_LINK_STS_CHG);
	u32 link;
	int i;

	/* Clear status */
	sw_w32(ports, RTL838X_ISR_PORT_LINK_STS_CHG);
	pr_info("RTL8380 Link change: status: %x, ports %x\n", status, ports);

	for (i = 0; i < 28; i++) {
		if (ports & BIT(i)) {
			link = sw_r32(RTL838X_MAC_LINK_STS);
			if (link & BIT(i))
				dsa_port_phylink_mac_change(ds, i, true);
			else
				dsa_port_phylink_mac_change(ds, i, false);
		}
	}
	return IRQ_HANDLED;
}

int rtl838x_smi_wait_op(int timeout)
{
	do {
		timeout--;
		udelay(10);
	} while ((sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & 0x1) && (timeout >= 0));
	if (timeout <= 0)
		return -1;
	return 0;
}

/*
 * Reads a register in a page from the PHY
 */
int rtl838x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
{
	u32 v;
	u32 park_page;

	if (port > 31) {
		*val = 0xffff;
		return 0;
	}

	if (page > 4095 || reg > 31)
		return -ENOTSUPP;

	mutex_lock(&smi_lock);

	if (rtl838x_smi_wait_op(10000))
		goto timeout;

	sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);

	park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
	v = reg << 20 | page << 3;
	sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
	sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);

	if (rtl838x_smi_wait_op(10000))
		goto timeout;

	*val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;

	mutex_unlock(&smi_lock);
	return 0;

timeout:
	mutex_unlock(&smi_lock);
	return -ETIMEDOUT;
}

/*
 * Write to a register in a page of the PHY
 */
int rtl838x_write_phy(u32 port, u32 page, u32 reg, u32 val)
{
	u32 v;
	u32 park_page;

	val &= 0xffff;
	if (port > 31 || page > 4095 || reg > 31)
		return -ENOTSUPP;

	mutex_lock(&smi_lock);
	if (rtl838x_smi_wait_op(10000))
		goto timeout;

	sw_w32(BIT(port), RTL838X_SMI_ACCESS_PHY_CTRL_0);
	mdelay(10);

	sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);

	park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
	v = reg << 20 | page << 3 | 0x4;
	sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
	sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);

	if (rtl838x_smi_wait_op(10000))
		goto timeout;

	mutex_unlock(&smi_lock);
	return 0;

timeout:
	mutex_unlock(&smi_lock);
	return -ETIMEDOUT;
}

/*
 * Read an mmd register of a PHY
 */
int rtl838x_read_mmd_phy(u32 port, u32 addr, u32 reg, u32 *val)
{
	u32 v;

	mutex_lock(&smi_lock);

	if (rtl838x_smi_wait_op(10000))
		goto timeout;

	sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
	mdelay(10);

	sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);

	v = addr << 16 | reg;
	sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_3);

	/* mmd-access | read | cmd-start */
	v = 1 << 1 | 0 << 2 | 1;
	sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);

	if (rtl838x_smi_wait_op(10000))
		goto timeout;

	*val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;

	mutex_unlock(&smi_lock);
	return 0;

timeout:
	mutex_unlock(&smi_lock);
	return -ETIMEDOUT;
}

/*
 * Write to an mmd register of a PHY
 */
int rtl838x_write_mmd_phy(u32 port, u32 addr, u32 reg, u32 val)
{
	u32 v;

	pr_debug("MMD write: port %d, dev %d, reg %d, val %x\n", port, addr, reg, val);
	val &= 0xffff;
	mutex_lock(&smi_lock);

	if (rtl838x_smi_wait_op(10000))
		goto timeout;

	sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
	mdelay(10);

	sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);

	sw_w32_mask(0x1f << 16, addr << 16, RTL838X_SMI_ACCESS_PHY_CTRL_3);
	sw_w32_mask(0xffff, reg, RTL838X_SMI_ACCESS_PHY_CTRL_3);
	/* mmd-access | write | cmd-start */
	v = 1 << 1 | 1 << 2 | 1;
	sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);

	if (rtl838x_smi_wait_op(10000))
		goto timeout;

	mutex_unlock(&smi_lock);
	return 0;

timeout:
	mutex_unlock(&smi_lock);
	return -ETIMEDOUT;
}

void rtl8380_get_version(struct rtl838x_switch_priv *priv)
{
	u32 rw_save, info_save;
	u32 info;

	rw_save = sw_r32(RTL838X_INT_RW_CTRL);
	sw_w32(rw_save | 0x3, RTL838X_INT_RW_CTRL);

	info_save = sw_r32(RTL838X_CHIP_INFO);
	sw_w32(info_save | 0xA0000000, RTL838X_CHIP_INFO);

	info = sw_r32(RTL838X_CHIP_INFO);
	sw_w32(info_save, RTL838X_CHIP_INFO);
	sw_w32(rw_save, RTL838X_INT_RW_CTRL);

	if ((info & 0xFFFF) == 0x6275) {
		if (((info >> 16) & 0x1F) == 0x1)
			priv->version = RTL8380_VERSION_A;
		else if (((info >> 16) & 0x1F) == 0x2)
			priv->version = RTL8380_VERSION_B;
		else
			priv->version = RTL8380_VERSION_B;
	} else {
		priv->version = '-';
	}
}

void rtl838x_vlan_profile_dump(int profile)
{
	u32 p;

	if (profile < 0 || profile > 7)
		return;

	p = sw_r32(RTL838X_VLAN_PROFILE(profile));

	pr_info("VLAN profile %d: L2 learning: %d, UNKN L2MC FLD PMSK %d, \
		UNKN IPMC FLD PMSK %d, UNKN IPv6MC FLD PMSK: %d",
		profile, p & 1, (p >> 1) & 0x1ff, (p >> 10) & 0x1ff, (p >> 19) & 0x1ff);
}

void rtl8380_sds_rst(int mac)
{
	u32 offset = (mac == 24) ? 0 : 0x100;

	sw_w32_mask(1 << 11, 0, RTL838X_SDS4_FIB_REG0 + offset);
	sw_w32_mask(0x3, 0, RTL838X_SDS4_REG28 + offset);
	sw_w32_mask(0x3, 0x3, RTL838X_SDS4_REG28 + offset);
	sw_w32_mask(0, 0x1 << 6, RTL838X_SDS4_DUMMY0 + offset);
	sw_w32_mask(0x1 << 6, 0, RTL838X_SDS4_DUMMY0 + offset);
	pr_debug("SERDES reset: %d\n", mac);
}

int rtl8380_sds_power(int mac, int val)
{
	u32 mode = (val == 1) ? 0x4 : 0x9;
	u32 offset = (mac == 24) ? 5 : 0;

	if ((mac != 24) && (mac != 26)) {
		pr_err("%s: not a fibre port: %d\n", __func__, mac);
		return -1;
	}

	sw_w32_mask(0x1f << offset, mode << offset, RTL838X_SDS_MODE_SEL);

	rtl8380_sds_rst(mac);

	return 0;
}