// SPDX-License-Identifier: GPL-2.0-only #include #include "rtl83xx.h" extern struct mutex smi_lock; extern struct rtl83xx_soc_info soc_info; void rtl839x_print_matrix(void) { volatile u64 *ptr9; int i; ptr9 = RTL838X_SW_BASE + RTL839X_PORT_ISO_CTRL(0); for (i = 0; i < 52; i += 4) pr_debug("> %16llx %16llx %16llx %16llx\n", ptr9[i + 0], ptr9[i + 1], ptr9[i + 2], ptr9[i + 3]); pr_debug("CPU_PORT> %16llx\n", ptr9[52]); } static inline int rtl839x_port_iso_ctrl(int p) { return RTL839X_PORT_ISO_CTRL(p); } static inline void rtl839x_exec_tbl0_cmd(u32 cmd) { sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_0); do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_0) & BIT(16)); } static inline void rtl839x_exec_tbl1_cmd(u32 cmd) { sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_1); do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_1) & BIT(16)); } inline void rtl839x_exec_tbl2_cmd(u32 cmd) { sw_w32(cmd, RTL839X_TBL_ACCESS_CTRL_2); do { } while (sw_r32(RTL839X_TBL_ACCESS_CTRL_2) & (1 << 9)); } static inline int rtl839x_tbl_access_data_0(int i) { return RTL839X_TBL_ACCESS_DATA_0(i); } static void rtl839x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info) { u32 u, v, w; // Read VLAN table (0) via register 0 struct table_reg *r = rtl_table_get(RTL8390_TBL_0, 0); rtl_table_read(r, vlan); u = sw_r32(rtl_table_data(r, 0)); v = sw_r32(rtl_table_data(r, 1)); w = sw_r32(rtl_table_data(r, 2)); rtl_table_release(r); info->tagged_ports = u; info->tagged_ports = (info->tagged_ports << 21) | ((v >> 11) & 0x1fffff); info->profile_id = w >> 30 | ((v & 1) << 2); info->hash_mc_fid = !!(w & BIT(2)); info->hash_uc_fid = !!(w & BIT(3)); info->fid = (v >> 3) & 0xff; // Read UNTAG table (0) via table register 1 r = rtl_table_get(RTL8390_TBL_1, 0); rtl_table_read(r, vlan); u = sw_r32(rtl_table_data(r, 0)); v = sw_r32(rtl_table_data(r, 1)); rtl_table_release(r); info->untagged_ports = u; info->untagged_ports = (info->untagged_ports << 21) | ((v >> 11) & 0x1fffff); } static void rtl839x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info) { u32 u, v, w; // Access VLAN table (0) via register 0 struct table_reg *r = rtl_table_get(RTL8390_TBL_0, 0); u = info->tagged_ports >> 21; v = info->tagged_ports << 11; v |= ((u32)info->fid) << 3; v |= info->hash_uc_fid ? BIT(2) : 0; v |= info->hash_mc_fid ? BIT(1) : 0; v |= (info->profile_id & 0x4) ? 1 : 0; w = ((u32)(info->profile_id & 3)) << 30; sw_w32(u, rtl_table_data(r, 0)); sw_w32(v, rtl_table_data(r, 1)); sw_w32(w, rtl_table_data(r, 2)); rtl_table_write(r, vlan); rtl_table_release(r); } static void rtl839x_vlan_set_untagged(u32 vlan, u64 portmask) { u32 u, v; // Access UNTAG table (0) via table register 1 struct table_reg *r = rtl_table_get(RTL8390_TBL_1, 0); u = portmask >> 21; v = portmask << 11; sw_w32(u, rtl_table_data(r, 0)); sw_w32(v, rtl_table_data(r, 1)); rtl_table_write(r, vlan); rtl_table_release(r); } /* Sets the L2 forwarding to be based on either the inner VLAN tag or the outer */ static void rtl839x_vlan_fwd_on_inner(int port, bool is_set) { if (is_set) rtl839x_mask_port_reg_be(BIT_ULL(port), 0ULL, RTL839X_VLAN_PORT_FWD); else rtl839x_mask_port_reg_be(0ULL, BIT_ULL(port), RTL839X_VLAN_PORT_FWD); } /* * Hash seed is vid (actually rvid) concatenated with the MAC address */ static u64 rtl839x_l2_hash_seed(u64 mac, u32 vid) { u64 v = vid; v <<= 48; v |= mac; return v; } /* * Applies the same hash algorithm as the one used currently by the ASIC to the seed * and returns a key into the L2 hash table */ static u32 rtl839x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed) { u32 h1, h2, h; if (sw_r32(priv->r->l2_ctrl_0) & 1) { h1 = (u32) (((seed >> 60) & 0x3f) ^ ((seed >> 54) & 0x3f) ^ ((seed >> 36) & 0x3f) ^ ((seed >> 30) & 0x3f) ^ ((seed >> 12) & 0x3f) ^ ((seed >> 6) & 0x3f)); h2 = (u32) (((seed >> 48) & 0x3f) ^ ((seed >> 42) & 0x3f) ^ ((seed >> 24) & 0x3f) ^ ((seed >> 18) & 0x3f) ^ (seed & 0x3f)); h = (h1 << 6) | h2; } else { h = (seed >> 60) ^ ((((seed >> 48) & 0x3f) << 6) | ((seed >> 54) & 0x3f)) ^ ((seed >> 36) & 0xfff) ^ ((seed >> 24) & 0xfff) ^ ((seed >> 12) & 0xfff) ^ (seed & 0xfff); } return h; } static inline int rtl839x_mac_force_mode_ctrl(int p) { return RTL839X_MAC_FORCE_MODE_CTRL + (p << 2); } static inline int rtl839x_mac_port_ctrl(int p) { return RTL839X_MAC_PORT_CTRL(p); } static inline int rtl839x_l2_port_new_salrn(int p) { return RTL839X_L2_PORT_NEW_SALRN(p); } static inline int rtl839x_l2_port_new_sa_fwd(int p) { return RTL839X_L2_PORT_NEW_SA_FWD(p); } static inline int rtl839x_mac_link_spd_sts(int p) { return RTL839X_MAC_LINK_SPD_STS(p); } static inline int rtl839x_trk_mbr_ctr(int group) { return RTL839X_TRK_MBR_CTR + (group << 3); } static void rtl839x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e) { /* Table contains different entry types, we need to identify the right one: * Check for MC entries, first */ e->is_ip_mc = !!(r[2] & BIT(31)); e->is_ipv6_mc = !!(r[2] & BIT(30)); e->type = L2_INVALID; if (!e->is_ip_mc) { e->mac[0] = (r[0] >> 12); e->mac[1] = (r[0] >> 4); e->mac[2] = ((r[1] >> 28) | (r[0] << 4)); e->mac[3] = (r[1] >> 20); e->mac[4] = (r[1] >> 12); e->mac[5] = (r[1] >> 4); /* Is it a unicast entry? check multicast bit */ if (!(e->mac[0] & 1)) { e->is_static = !!((r[2] >> 18) & 1); e->vid = (r[2] >> 4) & 0xfff; e->rvid = (r[0] >> 20) & 0xfff; e->port = (r[2] >> 24) & 0x3f; e->block_da = !!(r[2] & (1 << 19)); e->block_sa = !!(r[2] & (1 << 20)); e->suspended = !!(r[2] & (1 << 17)); e->next_hop = !!(r[2] & (1 << 16)); if (e->next_hop) pr_info("Found next hop entry, need to read data\n"); e->age = (r[2] >> 21) & 3; e->valid = true; if (!(r[2] & 0xc0fd0000)) /* Check for valid entry */ e->valid = false; else e->type = L2_UNICAST; } else { e->valid = true; e->type = L2_MULTICAST; e->mc_portmask_index = (r[2]>>6) & 0xfff; } } if (e->is_ip_mc) { e->valid = true; e->type = IP4_MULTICAST; } if (e->is_ipv6_mc) { e->valid = true; e->type = IP6_MULTICAST; } } /* * Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry */ static void rtl839x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e) { if (!e->valid) { r[0] = r[1] = r[2] = 0; return; } r[2] = e->is_ip_mc ? BIT(31) : 0; r[2] |= e->is_ipv6_mc ? BIT(30) : 0; if (!e->is_ip_mc && !e->is_ipv6_mc) { r[0] = ((u32)e->mac[0]) << 12; r[0] |= ((u32)e->mac[1]) << 4; r[0] |= ((u32)e->mac[2]) >> 4; r[1] = ((u32)e->mac[2]) << 28; r[1] |= ((u32)e->mac[3]) << 20; r[1] |= ((u32)e->mac[4]) << 12; r[1] |= ((u32)e->mac[5]) << 4; if (!(e->mac[0] & 1)) { // Not multicast r[2] |= e->is_static ? BIT(18) : 0; r[2] |= e->vid << 4; r[0] |= ((u32)e->rvid) << 20; r[2] |= e->port << 24; r[2] |= e->block_da ? BIT(19) : 0; r[2] |= e->block_sa ? BIT(20) : 0; r[2] |= e->suspended ? BIT(17) : 0; if (e->next_hop) { r[2] |= BIT(16); r[2] |= e->nh_vlan_target ? BIT(15) : 0; r[2] |= (e->nh_route_id & 0x7ff) << 4; } r[2] |= ((u32)e->age) << 21; } else { // L2 Multicast r[0] |= ((u32)e->rvid) << 20; r[2] |= ((u32)e->mc_portmask_index) << 6; pr_debug("Write L2 MC entry: %08x %08x %08x\n", r[0], r[1], r[2]); } } else { // IPv4 or IPv6 MC entry r[0] = ((u32)e->rvid) << 20; r[2] |= ((u32)e->mc_portmask_index) << 6; r[1] = e->mc_gip; } } /* * Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table * hash is the id of the bucket and pos is the position of the entry in that bucket * The data read from the SoC is filled into rtl838x_l2_entry */ static u64 rtl839x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e) { u32 r[3]; struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 0); u32 idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket int i; rtl_table_read(q, idx); for (i= 0; i < 3; i++) r[i] = sw_r32(rtl_table_data(q, i)); rtl_table_release(q); rtl839x_fill_l2_entry(r, e); if (!e->valid) return 0; return rtl839x_l2_hash_seed(ether_addr_to_u64(&e->mac[0]), e->rvid); } static void rtl839x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e) { u32 r[3]; struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 0); int i; u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket rtl839x_fill_l2_row(r, e); for (i= 0; i < 3; i++) sw_w32(r[i], rtl_table_data(q, i)); rtl_table_write(q, idx); rtl_table_release(q); } static u64 rtl839x_read_cam(int idx, struct rtl838x_l2_entry *e) { u32 r[3]; struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 1); // Access L2 Table 1 int i; rtl_table_read(q, idx); for (i= 0; i < 3; i++) r[i] = sw_r32(rtl_table_data(q, i)); rtl_table_release(q); rtl839x_fill_l2_entry(r, e); if (!e->valid) return 0; pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]); // Return MAC with concatenated VID ac concatenated ID return rtl839x_l2_hash_seed(ether_addr_to_u64(&e->mac[0]), e->rvid); } static void rtl839x_write_cam(int idx, struct rtl838x_l2_entry *e) { u32 r[3]; struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 1); // Access L2 Table 1 int i; rtl839x_fill_l2_row(r, e); for (i= 0; i < 3; i++) sw_w32(r[i], rtl_table_data(q, i)); rtl_table_write(q, idx); rtl_table_release(q); } static u64 rtl839x_read_mcast_pmask(int idx) { u64 portmask; // Read MC_PMSK (2) via register RTL8390_TBL_L2 struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 2); rtl_table_read(q, idx); portmask = sw_r32(rtl_table_data(q, 0)); portmask <<= 32; portmask |= sw_r32(rtl_table_data(q, 1)); portmask >>= 11; // LSB is bit 11 in data registers rtl_table_release(q); return portmask; } static void rtl839x_write_mcast_pmask(int idx, u64 portmask) { // Access MC_PMSK (2) via register RTL8380_TBL_L2 struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 2); portmask <<= 11; // LSB is bit 11 in data registers sw_w32((u32)(portmask >> 32), rtl_table_data(q, 0)); sw_w32((u32)((portmask & 0xfffff800)), rtl_table_data(q, 1)); rtl_table_write(q, idx); rtl_table_release(q); } static void rtl839x_vlan_profile_setup(int profile) { u32 p[2]; u32 pmask_id = UNKNOWN_MC_PMASK; p[0] = pmask_id; // Use portmaks 0xfff for unknown IPv6 MC flooding // Enable L2 Learning BIT 0, portmask UNKNOWN_MC_PMASK for IP/L2-MC traffic flooding p[1] = 1 | pmask_id << 1 | pmask_id << 13; sw_w32(p[0], RTL839X_VLAN_PROFILE(profile)); sw_w32(p[1], RTL839X_VLAN_PROFILE(profile) + 4); rtl839x_write_mcast_pmask(UNKNOWN_MC_PMASK, 0x001fffffffffffff); } static inline int rtl839x_vlan_port_egr_filter(int port) { return RTL839X_VLAN_PORT_EGR_FLTR(port); } static inline int rtl839x_vlan_port_igr_filter(int port) { return RTL839X_VLAN_PORT_IGR_FLTR(port); } u64 rtl839x_traffic_get(int source) { return rtl839x_get_port_reg_be(rtl839x_port_iso_ctrl(source)); } void rtl839x_traffic_set(int source, u64 dest_matrix) { rtl839x_set_port_reg_be(dest_matrix, rtl839x_port_iso_ctrl(source)); } void rtl839x_traffic_enable(int source, int dest) { rtl839x_mask_port_reg_be(0, BIT_ULL(dest), rtl839x_port_iso_ctrl(source)); } void rtl839x_traffic_disable(int source, int dest) { rtl839x_mask_port_reg_be(BIT_ULL(dest), 0, rtl839x_port_iso_ctrl(source)); } irqreturn_t rtl839x_switch_irq(int irq, void *dev_id) { struct dsa_switch *ds = dev_id; u32 status = sw_r32(RTL839X_ISR_GLB_SRC); u64 ports = rtl839x_get_port_reg_le(RTL839X_ISR_PORT_LINK_STS_CHG); u64 link; int i; /* Clear status */ rtl839x_set_port_reg_le(ports, RTL839X_ISR_PORT_LINK_STS_CHG); pr_debug("RTL8390 Link change: status: %x, ports %llx\n", status, ports); for (i = 0; i < RTL839X_CPU_PORT; i++) { if (ports & BIT_ULL(i)) { link = rtl839x_get_port_reg_le(RTL839X_MAC_LINK_STS); if (link & BIT_ULL(i)) dsa_port_phylink_mac_change(ds, i, true); else dsa_port_phylink_mac_change(ds, i, false); } } return IRQ_HANDLED; } // TODO: unused int rtl8390_sds_power(int mac, int val) { u32 offset = (mac == 48) ? 0x0 : 0x100; u32 mode = val ? 0 : 1; pr_debug("In %s: mac %d, set %d\n", __func__, mac, val); if ((mac != 48) && (mac != 49)) { pr_err("%s: not an SFP port: %d\n", __func__, mac); return -1; } // Set bit 1003. 1000 starts at 7c sw_w32_mask(BIT(11), mode << 11, RTL839X_SDS12_13_PWR0 + offset); return 0; } int rtl839x_read_phy(u32 port, u32 page, u32 reg, u32 *val) { u32 v; if (port > 63 || page > 4095 || reg > 31) return -ENOTSUPP; mutex_lock(&smi_lock); sw_w32_mask(0xffff0000, port << 16, RTL839X_PHYREG_DATA_CTRL); v = reg << 5 | page << 10 | ((page == 0x1fff) ? 0x1f : 0) << 23; sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL); sw_w32(0x1ff, RTL839X_PHYREG_CTRL); v |= 1; sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL); do { } while (sw_r32(RTL839X_PHYREG_ACCESS_CTRL) & 0x1); *val = sw_r32(RTL839X_PHYREG_DATA_CTRL) & 0xffff; mutex_unlock(&smi_lock); return 0; } int rtl839x_write_phy(u32 port, u32 page, u32 reg, u32 val) { u32 v; int err = 0; val &= 0xffff; if (port > 63 || page > 4095 || reg > 31) return -ENOTSUPP; mutex_lock(&smi_lock); // Set PHY to access rtl839x_set_port_reg_le(BIT_ULL(port), RTL839X_PHYREG_PORT_CTRL); sw_w32_mask(0xffff0000, val << 16, RTL839X_PHYREG_DATA_CTRL); v = reg << 5 | page << 10 | ((page == 0x1fff) ? 0x1f : 0) << 23; sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL); sw_w32(0x1ff, RTL839X_PHYREG_CTRL); v |= BIT(3) | 1; /* Write operation and execute */ sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL); do { } while (sw_r32(RTL839X_PHYREG_ACCESS_CTRL) & 0x1); if (sw_r32(RTL839X_PHYREG_ACCESS_CTRL) & 0x2) err = -EIO; mutex_unlock(&smi_lock); return err; } /* * Read an mmd register of the PHY */ int rtl839x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val) { int err = 0; u32 v; mutex_lock(&smi_lock); // Set PHY to access sw_w32_mask(0xffff << 16, port << 16, RTL839X_PHYREG_DATA_CTRL); // Set MMD device number and register to write to sw_w32(devnum << 16 | (regnum & 0xffff), RTL839X_PHYREG_MMD_CTRL); v = BIT(2) | BIT(0); // MMD-access | EXEC sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL); do { v = sw_r32(RTL839X_PHYREG_ACCESS_CTRL); } while (v & BIT(0)); // There is no error-checking via BIT 1 of v, as it does not seem to be set correctly *val = (sw_r32(RTL839X_PHYREG_DATA_CTRL) & 0xffff); pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, *val, err); mutex_unlock(&smi_lock); return err; } /* * Write to an mmd register of the PHY */ int rtl839x_write_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 val) { int err = 0; u32 v; mutex_lock(&smi_lock); // Set PHY to access rtl839x_set_port_reg_le(BIT_ULL(port), RTL839X_PHYREG_PORT_CTRL); // Set data to write sw_w32_mask(0xffff << 16, val << 16, RTL839X_PHYREG_DATA_CTRL); // Set MMD device number and register to write to sw_w32(devnum << 16 | (regnum & 0xffff), RTL839X_PHYREG_MMD_CTRL); v = BIT(3) | BIT(2) | BIT(0); // WRITE | MMD-access | EXEC sw_w32(v, RTL839X_PHYREG_ACCESS_CTRL); do { v = sw_r32(RTL839X_PHYREG_ACCESS_CTRL); } while (v & BIT(0)); pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, val, err); mutex_unlock(&smi_lock); return err; } void rtl8390_get_version(struct rtl838x_switch_priv *priv) { u32 info; sw_w32_mask(0xf << 28, 0xa << 28, RTL839X_CHIP_INFO); info = sw_r32(RTL839X_CHIP_INFO); pr_debug("Chip-Info: %x\n", info); priv->version = RTL8390_VERSION_A; } void rtl839x_vlan_profile_dump(int profile) { u32 p[2]; if (profile < 0 || profile > 7) return; p[0] = sw_r32(RTL839X_VLAN_PROFILE(profile)); p[1] = sw_r32(RTL839X_VLAN_PROFILE(profile) + 4); pr_info("VLAN profile %d: L2 learning: %d, UNKN L2MC FLD PMSK %d, \ UNKN IPMC FLD PMSK %d, UNKN IPv6MC FLD PMSK: %d", profile, p[1] & 1, (p[1] >> 1) & 0xfff, (p[1] >> 13) & 0xfff, (p[0]) & 0xfff); pr_info("VLAN profile %d: raw %08x, %08x\n", profile, p[0], p[1]); } static void rtl839x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[]) { int i; u32 cmd = 1 << 16 /* Execute cmd */ | 0 << 15 /* Read */ | 5 << 12 /* Table type 0b101 */ | (msti & 0xfff); priv->r->exec_tbl0_cmd(cmd); for (i = 0; i < 4; i++) port_state[i] = sw_r32(priv->r->tbl_access_data_0(i)); } static void rtl839x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[]) { int i; u32 cmd = 1 << 16 /* Execute cmd */ | 1 << 15 /* Write */ | 5 << 12 /* Table type 0b101 */ | (msti & 0xfff); for (i = 0; i < 4; i++) sw_w32(port_state[i], priv->r->tbl_access_data_0(i)); priv->r->exec_tbl0_cmd(cmd); } /* * Enables or disables the EEE/EEEP capability of a port */ void rtl839x_port_eee_set(struct rtl838x_switch_priv *priv, int port, bool enable) { u32 v; // This works only for Ethernet ports, and on the RTL839X, ports above 47 are SFP if (port >= 48) return; enable = true; pr_debug("In %s: setting port %d to %d\n", __func__, port, enable); v = enable ? 0xf : 0x0; // Set EEE for 100, 500, 1000MBit and 10GBit sw_w32_mask(0xf << 8, v << 8, rtl839x_mac_force_mode_ctrl(port)); // Set TX/RX EEE state v = enable ? 0x3 : 0x0; sw_w32(v, RTL839X_EEE_CTRL(port)); priv->ports[port].eee_enabled = enable; } /* * Get EEE own capabilities and negotiation result */ int rtl839x_eee_port_ability(struct rtl838x_switch_priv *priv, struct ethtool_eee *e, int port) { u64 link, a; if (port >= 48) return 0; link = rtl839x_get_port_reg_le(RTL839X_MAC_LINK_STS); if (!(link & BIT_ULL(port))) return 0; if (sw_r32(rtl839x_mac_force_mode_ctrl(port)) & BIT(8)) e->advertised |= ADVERTISED_100baseT_Full; if (sw_r32(rtl839x_mac_force_mode_ctrl(port)) & BIT(10)) e->advertised |= ADVERTISED_1000baseT_Full; a = rtl839x_get_port_reg_le(RTL839X_MAC_EEE_ABLTY); pr_info("Link partner: %016llx\n", a); if (rtl839x_get_port_reg_le(RTL839X_MAC_EEE_ABLTY) & BIT_ULL(port)) { e->lp_advertised = ADVERTISED_100baseT_Full; e->lp_advertised |= ADVERTISED_1000baseT_Full; return 1; } return 0; } static void rtl839x_init_eee(struct rtl838x_switch_priv *priv, bool enable) { int i; pr_info("Setting up EEE, state: %d\n", enable); // Set wake timer for TX and pause timer both to 0x21 sw_w32_mask(0xff << 20| 0xff, 0x21 << 20| 0x21, RTL839X_EEE_TX_TIMER_GELITE_CTRL); // Set pause wake timer for GIGA-EEE to 0x11 sw_w32_mask(0xff << 20, 0x11 << 20, RTL839X_EEE_TX_TIMER_GIGA_CTRL); // Set pause wake timer for 10GBit ports to 0x11 sw_w32_mask(0xff << 20, 0x11 << 20, RTL839X_EEE_TX_TIMER_10G_CTRL); // Setup EEE on all ports for (i = 0; i < priv->cpu_port; i++) { if (priv->ports[i].phy) rtl839x_port_eee_set(priv, i, enable); } priv->eee_enabled = enable; } const struct rtl838x_reg rtl839x_reg = { .mask_port_reg_be = rtl839x_mask_port_reg_be, .set_port_reg_be = rtl839x_set_port_reg_be, .get_port_reg_be = rtl839x_get_port_reg_be, .mask_port_reg_le = rtl839x_mask_port_reg_le, .set_port_reg_le = rtl839x_set_port_reg_le, .get_port_reg_le = rtl839x_get_port_reg_le, .stat_port_rst = RTL839X_STAT_PORT_RST, .stat_rst = RTL839X_STAT_RST, .stat_port_std_mib = RTL839X_STAT_PORT_STD_MIB, .traffic_enable = rtl839x_traffic_enable, .traffic_disable = rtl839x_traffic_disable, .traffic_get = rtl839x_traffic_get, .traffic_set = rtl839x_traffic_set, .port_iso_ctrl = rtl839x_port_iso_ctrl, .l2_ctrl_0 = RTL839X_L2_CTRL_0, .l2_ctrl_1 = RTL839X_L2_CTRL_1, .l2_port_aging_out = RTL839X_L2_PORT_AGING_OUT, .smi_poll_ctrl = RTL839X_SMI_PORT_POLLING_CTRL, .l2_tbl_flush_ctrl = RTL839X_L2_TBL_FLUSH_CTRL, .exec_tbl0_cmd = rtl839x_exec_tbl0_cmd, .exec_tbl1_cmd = rtl839x_exec_tbl1_cmd, .tbl_access_data_0 = rtl839x_tbl_access_data_0, .isr_glb_src = RTL839X_ISR_GLB_SRC, .isr_port_link_sts_chg = RTL839X_ISR_PORT_LINK_STS_CHG, .imr_port_link_sts_chg = RTL839X_IMR_PORT_LINK_STS_CHG, .imr_glb = RTL839X_IMR_GLB, .vlan_tables_read = rtl839x_vlan_tables_read, .vlan_set_tagged = rtl839x_vlan_set_tagged, .vlan_set_untagged = rtl839x_vlan_set_untagged, .vlan_profile_dump = rtl839x_vlan_profile_dump, .vlan_profile_setup = rtl839x_vlan_profile_setup, .vlan_fwd_on_inner = rtl839x_vlan_fwd_on_inner, .stp_get = rtl839x_stp_get, .stp_set = rtl839x_stp_set, .mac_force_mode_ctrl = rtl839x_mac_force_mode_ctrl, .mac_port_ctrl = rtl839x_mac_port_ctrl, .l2_port_new_salrn = rtl839x_l2_port_new_salrn, .l2_port_new_sa_fwd = rtl839x_l2_port_new_sa_fwd, .mir_ctrl = RTL839X_MIR_CTRL, .mir_dpm = RTL839X_MIR_DPM_CTRL, .mir_spm = RTL839X_MIR_SPM_CTRL, .mac_link_sts = RTL839X_MAC_LINK_STS, .mac_link_dup_sts = RTL839X_MAC_LINK_DUP_STS, .mac_link_spd_sts = rtl839x_mac_link_spd_sts, .mac_rx_pause_sts = RTL839X_MAC_RX_PAUSE_STS, .mac_tx_pause_sts = RTL839X_MAC_TX_PAUSE_STS, .read_l2_entry_using_hash = rtl839x_read_l2_entry_using_hash, .write_l2_entry_using_hash = rtl839x_write_l2_entry_using_hash, .read_cam = rtl839x_read_cam, .write_cam = rtl839x_write_cam, .vlan_port_egr_filter = RTL839X_VLAN_PORT_EGR_FLTR(0), .vlan_port_igr_filter = RTL839X_VLAN_PORT_IGR_FLTR(0), .vlan_port_pb = RTL839X_VLAN_PORT_PB_VLAN, .vlan_port_tag_sts_ctrl = RTL839X_VLAN_PORT_TAG_STS_CTRL, .trk_mbr_ctr = rtl839x_trk_mbr_ctr, .rma_bpdu_fld_pmask = RTL839X_RMA_BPDU_FLD_PMSK, .spcl_trap_eapol_ctrl = RTL839X_SPCL_TRAP_EAPOL_CTRL, .init_eee = rtl839x_init_eee, .port_eee_set = rtl839x_port_eee_set, .eee_port_ability = rtl839x_eee_port_ability, .l2_hash_seed = rtl839x_l2_hash_seed, .l2_hash_key = rtl839x_l2_hash_key, .read_mcast_pmask = rtl839x_read_mcast_pmask, .write_mcast_pmask = rtl839x_write_mcast_pmask, };